Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
81.1-a3
81.1-a
$3$
$9$
\(\Q(\sqrt{6}) \)
$2$
$[2, 0]$
81.1
\( 3^{4} \)
\( 3^{10} \)
$1.31330$
$(a+3)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$3$
3B.1.2
$1$
\( 3 \)
$1$
$1.717783831$
1.051923469
\( 2798699520 a - 6855384768 \)
\( \bigl[a\) , \( 0\) , \( a + 1\) , \( 13 a + 24\) , \( -23 a - 67\bigr] \)
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(13a+24\right){x}-23a-67$
81.1-c3
81.1-c
$3$
$9$
\(\Q(\sqrt{6}) \)
$2$
$[2, 0]$
81.1
\( 3^{4} \)
\( 3^{10} \)
$1.31330$
$(a+3)$
0
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$3$
3B.1.1
$1$
\( 3 \)
$1$
$15.46005448$
1.051923469
\( 2798699520 a - 6855384768 \)
\( \bigl[a\) , \( 0\) , \( a + 1\) , \( 136 a - 336\) , \( -1289 a + 3155\bigr] \)
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(136a-336\right){x}-1289a+3155$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.