Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
288.1-a2 |
288.1-a |
$2$ |
$2$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
288.1 |
\( 2^{5} \cdot 3^{2} \) |
\( 2^{12} \cdot 3^{10} \) |
$1.80340$ |
$(-a+2), (a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$7.744559956$ |
1.580851681 |
\( \frac{2744000}{9} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -700 a - 1713\) , \( 16307 a + 39944\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(-700a-1713\right){x}+16307a+39944$ |
288.1-c2 |
288.1-c |
$2$ |
$2$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
288.1 |
\( 2^{5} \cdot 3^{2} \) |
\( 2^{12} \cdot 3^{10} \) |
$1.80340$ |
$(-a+2), (a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$7.744559956$ |
1.580851681 |
\( \frac{2744000}{9} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -700 a - 1713\) , \( -16307 a - 39944\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-700a-1713\right){x}-16307a-39944$ |
288.1-d2 |
288.1-d |
$2$ |
$2$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
288.1 |
\( 2^{5} \cdot 3^{2} \) |
\( 2^{12} \cdot 3^{10} \) |
$1.80340$ |
$(-a+2), (a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.913960172$ |
$7.744559956$ |
2.889670952 |
\( \frac{2744000}{9} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -33\) , \( 21 a\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}-33{x}+21a$ |
288.1-f2 |
288.1-f |
$2$ |
$2$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
288.1 |
\( 2^{5} \cdot 3^{2} \) |
\( 2^{12} \cdot 3^{10} \) |
$1.80340$ |
$(-a+2), (a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.913960172$ |
$7.744559956$ |
2.889670952 |
\( \frac{2744000}{9} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -33\) , \( -21 a\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}-33{x}-21a$ |
768.1-h2 |
768.1-h |
$2$ |
$2$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
768.1 |
\( 2^{8} \cdot 3 \) |
\( 2^{12} \cdot 3^{4} \) |
$2.30454$ |
$(-a+2), (a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$13.41397132$ |
1.369057715 |
\( \frac{2744000}{9} \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 24 a - 56\) , \( -86 a + 210\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(24a-56\right){x}-86a+210$ |
768.1-i2 |
768.1-i |
$2$ |
$2$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
768.1 |
\( 2^{8} \cdot 3 \) |
\( 2^{12} \cdot 3^{4} \) |
$2.30454$ |
$(-a+2), (a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.788156716$ |
$13.41397132$ |
4.316128133 |
\( \frac{2744000}{9} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -24 a - 56\) , \( -86 a - 210\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-24a-56\right){x}-86a-210$ |
768.1-k2 |
768.1-k |
$2$ |
$2$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
768.1 |
\( 2^{8} \cdot 3 \) |
\( 2^{12} \cdot 3^{4} \) |
$2.30454$ |
$(-a+2), (a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$13.41397132$ |
1.369057715 |
\( \frac{2744000}{9} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( -24 a - 56\) , \( 86 a + 210\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-24a-56\right){x}+86a+210$ |
768.1-n2 |
768.1-n |
$2$ |
$2$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
768.1 |
\( 2^{8} \cdot 3 \) |
\( 2^{12} \cdot 3^{4} \) |
$2.30454$ |
$(-a+2), (a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.788156716$ |
$13.41397132$ |
4.316128133 |
\( \frac{2744000}{9} \) |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( 24 a - 56\) , \( 86 a - 210\bigr] \) |
${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(24a-56\right){x}+86a-210$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.