Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
288.1-a2 288.1-a \(\Q(\sqrt{6}) \) \( 2^{5} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.744559956$ 1.580851681 \( \frac{2744000}{9} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -700 a - 1713\) , \( 16307 a + 39944\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-700a-1713\right){x}+16307a+39944$
288.1-c2 288.1-c \(\Q(\sqrt{6}) \) \( 2^{5} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.744559956$ 1.580851681 \( \frac{2744000}{9} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -700 a - 1713\) , \( -16307 a - 39944\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-700a-1713\right){x}-16307a-39944$
288.1-d2 288.1-d \(\Q(\sqrt{6}) \) \( 2^{5} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.913960172$ $7.744559956$ 2.889670952 \( \frac{2744000}{9} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -33\) , \( 21 a\bigr] \) ${y}^2={x}^{3}+a{x}^{2}-33{x}+21a$
288.1-f2 288.1-f \(\Q(\sqrt{6}) \) \( 2^{5} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.913960172$ $7.744559956$ 2.889670952 \( \frac{2744000}{9} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -33\) , \( -21 a\bigr] \) ${y}^2={x}^{3}-a{x}^{2}-33{x}-21a$
768.1-h2 768.1-h \(\Q(\sqrt{6}) \) \( 2^{8} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.41397132$ 1.369057715 \( \frac{2744000}{9} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 24 a - 56\) , \( -86 a + 210\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(24a-56\right){x}-86a+210$
768.1-i2 768.1-i \(\Q(\sqrt{6}) \) \( 2^{8} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.788156716$ $13.41397132$ 4.316128133 \( \frac{2744000}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -24 a - 56\) , \( -86 a - 210\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-24a-56\right){x}-86a-210$
768.1-k2 768.1-k \(\Q(\sqrt{6}) \) \( 2^{8} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.41397132$ 1.369057715 \( \frac{2744000}{9} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -24 a - 56\) , \( 86 a + 210\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-24a-56\right){x}+86a+210$
768.1-n2 768.1-n \(\Q(\sqrt{6}) \) \( 2^{8} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.788156716$ $13.41397132$ 4.316128133 \( \frac{2744000}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 24 a - 56\) , \( 86 a - 210\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(24a-56\right){x}+86a-210$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.