Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
441.1-d2
441.1-d
$2$
$2$
\(\Q(\sqrt{6}) \)
$2$
$[2, 0]$
441.1
\( 3^{2} \cdot 7^{2} \)
\( 3^{6} \cdot 7^{2} \)
$2.00611$
$(a+3), (7)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 2^{2} \)
$0.383631390$
$16.90097518$
2.646977654
\( \frac{1259712}{7} \)
\( \bigl[a\) , \( 0\) , \( a + 1\) , \( -14 a - 36\) , \( -50 a - 123\bigr] \)
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-14a-36\right){x}-50a-123$
441.1-g2
441.1-g
$2$
$2$
\(\Q(\sqrt{6}) \)
$2$
$[2, 0]$
441.1
\( 3^{2} \cdot 7^{2} \)
\( 3^{6} \cdot 7^{2} \)
$2.00611$
$(a+3), (7)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 2^{2} \)
$0.383631390$
$16.90097518$
2.646977654
\( \frac{1259712}{7} \)
\( \bigl[a\) , \( 0\) , \( a + 1\) , \( 13 a - 36\) , \( 49 a - 123\bigr] \)
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(13a-36\right){x}+49a-123$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.