Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
338.1-b2
338.1-b
$3$
$9$
\(\Q(\sqrt{6}) \)
$2$
$[2, 0]$
338.1
\( 2 \cdot 13^{2} \)
\( 2^{6} \cdot 13^{6} \)
$1.87704$
$(-a+2), (13)$
0
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
✓
$3$
3Cs.1.1
$1$
\( 2 \cdot 3^{2} \)
$1$
$12.10583107$
4.942184841
\( -\frac{10218313}{17576} \)
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -91 a - 220\) , \( 1444 a + 3538\bigr] \)
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-91a-220\right){x}+1444a+3538$
338.1-g2
338.1-g
$3$
$9$
\(\Q(\sqrt{6}) \)
$2$
$[2, 0]$
338.1
\( 2 \cdot 13^{2} \)
\( 2^{6} \cdot 13^{6} \)
$1.87704$
$(-a+2), (13)$
$1$
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
✓
$3$
3Cs.1.1
$1$
\( 2 \cdot 3 \)
$2.550835064$
$2.392373550$
1.660903829
\( -\frac{10218313}{17576} \)
\( \bigl[1\) , \( 0\) , \( 1\) , \( -5\) , \( -8\bigr] \)
${y}^2+{x}{y}+{y}={x}^{3}-5{x}-8$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.