Learn more

Refine search


Results (6 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
192.1-e2 192.1-e \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $11.36701703$ 2.480486475 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -3 a + 11\) , \( 4 a - 12\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-3a+11\right){x}+4a-12$
192.1-j2 192.1-j \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.818877155$ $18.60223895$ 1.662050944 \( \frac{2048}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}+{x}$
576.1-c2 576.1-c \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.882885052$ $8.395474317$ 3.234966217 \( \frac{2048}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -a + 8\) , \( -2 a + 8\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-a+8\right){x}-2a+8$
576.1-k2 576.1-k \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.882885052$ $8.395474317$ 3.234966217 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 3 a + 6\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(3a+6\right){x}$
768.1-q2 768.1-q \(\Q(\sqrt{21}) \) \( 2^{8} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.290579554$ $11.36701703$ 3.201265131 \( \frac{2048}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}+{x}$
768.1-bi2 768.1-bi \(\Q(\sqrt{21}) \) \( 2^{8} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $18.60223895$ 2.029670668 \( \frac{2048}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -3 a + 11\) , \( -4 a + 12\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-3a+11\right){x}-4a+12$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.