Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
300.3-e2
300.3-e
$2$
$5$
\(\Q(\sqrt{21}) \)
$2$
$[2, 0]$
300.3
\( 2^{2} \cdot 3 \cdot 5^{2} \)
\( - 2^{10} \cdot 3^{3} \cdot 5^{10} \)
$1.70423$
$(-a+2), (-a), (2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$5$
5B.4.2
$1$
\( 1 \)
$1$
$3.788201406$
0.826653318
\( \frac{1073840073184957}{288} a + \frac{1923556673230885}{288} \)
\( \bigl[a + 1\) , \( a\) , \( a\) , \( -48 a - 233\) , \( -8908 a + 26872\bigr] \)
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-48a-233\right){x}-8908a+26872$
300.3-p2
300.3-p
$2$
$5$
\(\Q(\sqrt{21}) \)
$2$
$[2, 0]$
300.3
\( 2^{2} \cdot 3 \cdot 5^{2} \)
\( - 2^{10} \cdot 3^{3} \cdot 5^{10} \)
$1.70423$
$(-a+2), (-a), (2)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$5$
5B.1.2
$1$
\( 3 \)
$5.045500216$
$0.440016500$
2.906797612
\( \frac{1073840073184957}{288} a + \frac{1923556673230885}{288} \)
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( -1879 a - 3373\) , \( -65922 a - 118478\bigr] \)
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1879a-3373\right){x}-65922a-118478$
900.2-h2
900.2-h
$2$
$5$
\(\Q(\sqrt{21}) \)
$2$
$[2, 0]$
900.2
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \)
\( - 2^{10} \cdot 3^{9} \cdot 5^{10} \)
$2.24289$
$(-a+2), (-a), (2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$5$
5B.4.2
$1$
\( 2^{2} \cdot 5 \)
$1$
$0.451013524$
1.968384397
\( \frac{1073840073184957}{288} a + \frac{1923556673230885}{288} \)
\( \bigl[a\) , \( -1\) , \( a\) , \( 410 a - 1383\) , \( -508722 a + 1418527\bigr] \)
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(410a-1383\right){x}-508722a+1418527$
900.2-t2
900.2-t
$2$
$5$
\(\Q(\sqrt{21}) \)
$2$
$[2, 0]$
900.2
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \)
\( - 2^{10} \cdot 3^{9} \cdot 5^{10} \)
$2.24289$
$(-a+2), (-a), (2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$5$
5B.4.2
$1$
\( 2 \cdot 5 \)
$1$
$1.231944671$
2.688323670
\( \frac{1073840073184957}{288} a + \frac{1923556673230885}{288} \)
\( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( -1158 a - 2163\) , \( 38522 a + 47731\bigr] \)
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1158a-2163\right){x}+38522a+47731$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.