Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
192.1-g2
192.1-g
$2$
$2$
\(\Q(\sqrt{21}) \)
$2$
$[2, 0]$
192.1
\( 2^{6} \cdot 3 \)
\( 2^{16} \cdot 3^{2} \)
$1.52431$
$(-a+2), (2)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{2} \)
$1$
$10.97958556$
2.395941998
\( -\frac{77872}{3} a + 74480 \)
\( \bigl[0\) , \( 1\) , \( 0\) , \( -4 a - 8\) , \( -4 a - 8\bigr] \)
${y}^2={x}^{3}+{x}^{2}+\left(-4a-8\right){x}-4a-8$
192.1-h2
192.1-h
$2$
$2$
\(\Q(\sqrt{21}) \)
$2$
$[2, 0]$
192.1
\( 2^{6} \cdot 3 \)
\( 2^{16} \cdot 3^{2} \)
$1.52431$
$(-a+2), (2)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{2} \)
$0.196629636$
$22.72318029$
1.950017184
\( -\frac{77872}{3} a + 74480 \)
\( \bigl[0\) , \( a\) , \( 0\) , \( 6 a - 15\) , \( -15 a + 42\bigr] \)
${y}^2={x}^{3}+a{x}^{2}+\left(6a-15\right){x}-15a+42$
576.1-e2
576.1-e
$2$
$2$
\(\Q(\sqrt{21}) \)
$2$
$[2, 0]$
576.1
\( 2^{6} \cdot 3^{2} \)
\( 2^{16} \cdot 3^{8} \)
$2.00611$
$(-a+2), (2)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{4} \)
$0.278448748$
$7.047051066$
3.425571431
\( -\frac{77872}{3} a + 74480 \)
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 2 a - 13\) , \( 11 a - 11\bigr] \)
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(2a-13\right){x}+11a-11$
576.1-f2
576.1-f
$2$
$2$
\(\Q(\sqrt{21}) \)
$2$
$[2, 0]$
576.1
\( 2^{6} \cdot 3^{2} \)
\( 2^{16} \cdot 3^{8} \)
$2.00611$
$(-a+2), (2)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{4} \)
$0.128102796$
$11.80120592$
2.639157676
\( -\frac{77872}{3} a + 74480 \)
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( -60 a - 108\) , \( -228 a - 408\bigr] \)
${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-60a-108\right){x}-228a-408$
768.1-r2
768.1-r
$2$
$2$
\(\Q(\sqrt{21}) \)
$2$
$[2, 0]$
768.1
\( 2^{8} \cdot 3 \)
\( 2^{16} \cdot 3^{2} \)
$2.15570$
$(-a+2), (2)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2 \)
$0.647130862$
$22.72318029$
3.208865982
\( -\frac{77872}{3} a + 74480 \)
\( \bigl[0\) , \( -1\) , \( 0\) , \( -4 a - 8\) , \( 4 a + 8\bigr] \)
${y}^2={x}^{3}-{x}^{2}+\left(-4a-8\right){x}+4a+8$
768.1-bh2
768.1-bh
$2$
$2$
\(\Q(\sqrt{21}) \)
$2$
$[2, 0]$
768.1
\( 2^{8} \cdot 3 \)
\( 2^{16} \cdot 3^{2} \)
$2.15570$
$(-a+2), (2)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2 \)
$1$
$10.97958556$
1.197970999
\( -\frac{77872}{3} a + 74480 \)
\( \bigl[0\) , \( -a\) , \( 0\) , \( 6 a - 15\) , \( 15 a - 42\bigr] \)
${y}^2={x}^{3}-a{x}^{2}+\left(6a-15\right){x}+15a-42$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.