Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
1452.1-c1
1452.1-c
$2$
$2$
\(\Q(\sqrt{21}) \)
$2$
$[2, 0]$
1452.1
\( 2^{2} \cdot 3 \cdot 11^{2} \)
\( 2^{4} \cdot 3^{16} \cdot 11^{4} \)
$2.52778$
$(-a+2), (2), (11)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 2^{6} \)
$0.102553931$
$5.787714375$
4.144763299
\( -\frac{65315105246375}{3175524} a + \frac{91344237347125}{1587762} \)
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( -423 a - 860\) , \( 7025 a + 13001\bigr] \)
${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-423a-860\right){x}+7025a+13001$
1452.1-g1
1452.1-g
$2$
$2$
\(\Q(\sqrt{21}) \)
$2$
$[2, 0]$
1452.1
\( 2^{2} \cdot 3 \cdot 11^{2} \)
\( 2^{4} \cdot 3^{16} \cdot 11^{4} \)
$2.52778$
$(-a+2), (2), (11)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 2^{3} \)
$1$
$1.065931789$
0.465210772
\( -\frac{65315105246375}{3175524} a + \frac{91344237347125}{1587762} \)
\( \bigl[a\) , \( -a\) , \( 0\) , \( 493 a - 1465\) , \( 9949 a - 28067\bigr] \)
${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(493a-1465\right){x}+9949a-28067$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.