Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
4.1-c2
4.1-c
$4$
$10$
\(\Q(\sqrt{209}) \)
$2$
$[2, 0]$
4.1
\( 2^{2} \)
\( - 2^{21} \)
$1.82695$
$(11a+74), (11a-85)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2, 3, 5$
2B , 3Nn , 5B
$1$
\( 2 \cdot 3^{2} \cdot 5 \)
$1$
$2.636252383$
4.102951284
\( -\frac{239886134047017}{32768} a + \frac{463484975124303}{8192} \)
\( \bigl[1\) , \( -1\) , \( 1\) , \( 109626655 a - 847240411\) , \( 1679777810708 a - 12982021956321\bigr] \)
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(109626655a-847240411\right){x}+1679777810708a-12982021956321$
4.1-d2
4.1-d
$4$
$10$
\(\Q(\sqrt{209}) \)
$2$
$[2, 0]$
4.1
\( 2^{2} \)
\( - 2^{21} \)
$1.82695$
$(11a+74), (11a-85)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2, 3, 5$
2B , 3Nn , 5B
$1$
\( 2 \)
$1$
$8.606301134$
0.297655148
\( -\frac{239886134047017}{32768} a + \frac{463484975124303}{8192} \)
\( \bigl[1\) , \( -1\) , \( 0\) , \( 950 a + 6392\) , \( -42668 a - 287088\bigr] \)
${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(950a+6392\right){x}-42668a-287088$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.