Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
729.1-d1
729.1-d
$2$
$3$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
729.1
\( 3^{6} \)
\( - 3^{8} \)
$1.67414$
$(-a), (-a+1)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3$
3B
$1$
\( 1 \)
$0.354151165$
$14.41546786$
2.831885807
\( 13515 a + 16707 \)
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -5\) , \( a - 5\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}-5{x}+a-5$
729.1-e1
729.1-e
$2$
$3$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
729.1
\( 3^{6} \)
\( - 3^{14} \)
$1.67414$
$(-a), (-a+1)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3$
3B.1.2
$1$
\( 1 \)
$1$
$4.860164952$
1.347967226
\( 13515 a + 16707 \)
\( \bigl[a\) , \( -a\) , \( 1\) , \( a - 6\) , \( 6 a - 15\bigr] \)
${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(a-6\right){x}+6a-15$
729.1-f1
729.1-f
$2$
$3$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
729.1
\( 3^{6} \)
\( - 3^{20} \)
$1.67414$
$(-a), (-a+1)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3$
3B
$1$
\( 1 \)
$1$
$6.546120139$
1.815567063
\( 13515 a + 16707 \)
\( \bigl[a + 1\) , \( -1\) , \( a\) , \( 11 a - 33\) , \( -66 a + 144\bigr] \)
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(11a-33\right){x}-66a+144$
729.1-g1
729.1-g
$2$
$3$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
729.1
\( 3^{6} \)
\( - 3^{14} \)
$1.67414$
$(-a), (-a+1)$
$1$
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3$
3B.1.1
$1$
\( 3^{2} \)
$0.227641124$
$19.41608679$
2.451719308
\( 13515 a + 16707 \)
\( \bigl[1\) , \( -1\) , \( a\) , \( 7 a - 18\) , \( -29 a + 66\bigr] \)
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(7a-18\right){x}-29a+66$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.