Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1089.1-j3 1089.1-j \(\Q(\sqrt{3}) \) \( 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.151285692$ $20.23607837$ 1.767516929 \( \frac{19034163}{121} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -17\) , \( 30\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-17{x}+30$
1089.1-k3 1089.1-k \(\Q(\sqrt{3}) \) \( 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.037460680$ $5.583880404$ 3.344622652 \( \frac{19034163}{121} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -18\) , \( -31\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-18{x}-31$
1331.1-b3 1331.1-b \(\Q(\sqrt{3}) \) \( 11^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.56794726$ 1.525351799 \( \frac{19034163}{121} \) \( \bigl[a\) , \( a\) , \( 0\) , \( -133 a - 238\) , \( 1012 a + 1764\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(-133a-238\right){x}+1012a+1764$
1331.1-g3 1331.1-g \(\Q(\sqrt{3}) \) \( 11^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.102209106$ $2.916086435$ 1.769643082 \( \frac{19034163}{121} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -133 a - 238\) , \( -1012 a - 1764\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-133a-238\right){x}-1012a-1764$
1331.2-b3 1331.2-b \(\Q(\sqrt{3}) \) \( 11^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.56794726$ 1.525351799 \( \frac{19034163}{121} \) \( \bigl[a\) , \( -a\) , \( 0\) , \( 133 a - 238\) , \( -1012 a + 1764\bigr] \) ${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(133a-238\right){x}-1012a+1764$
1331.2-g3 1331.2-g \(\Q(\sqrt{3}) \) \( 11^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.102209106$ $2.916086435$ 1.769643082 \( \frac{19034163}{121} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 133 a - 238\) , \( 1012 a - 1764\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(133a-238\right){x}+1012a-1764$
1936.1-f3 1936.1-f \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.605759488$ $9.205806923$ 3.219596600 \( \frac{19034163}{121} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 24\) , \( 19 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-24\right){x}+19a-1$
1936.1-s3 1936.1-s \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.605759488$ $9.205806923$ 3.219596600 \( \frac{19034163}{121} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 24\) , \( -20 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-24\right){x}-20a-1$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.