Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
512.1-a1 512.1-a \(\Q(\sqrt{3}) \) \( 2^{9} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $18.70900640$ 1.350206235 \( -2002968 a + 3470040 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 3064 a - 5306\) , \( -119716 a + 207354\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(3064a-5306\right){x}-119716a+207354$
512.1-b1 512.1-b \(\Q(\sqrt{3}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.648148600$ $5.952999858$ 2.227664748 \( -2002968 a + 3470040 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 220 a - 380\) , \( 2464 a - 4268\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(220a-380\right){x}+2464a-4268$
512.1-g1 512.1-g \(\Q(\sqrt{3}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.592594401$ $5.952999858$ 2.227664748 \( -2002968 a + 3470040 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 3064 a - 5306\) , \( 119716 a - 207354\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(3064a-5306\right){x}+119716a-207354$
512.1-h1 512.1-h \(\Q(\sqrt{3}) \) \( 2^{9} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $18.70900640$ 1.350206235 \( -2002968 a + 3470040 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 220 a - 380\) , \( -2464 a + 4268\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(220a-380\right){x}-2464a+4268$
1024.1-c1 1024.1-c \(\Q(\sqrt{3}) \) \( 2^{10} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.276710919$ 1.523255234 \( -2002968 a + 3470040 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 1642 a - 2843\) , \( 48607 a - 84190\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(1642a-2843\right){x}+48607a-84190$
1024.1-d1 1024.1-d \(\Q(\sqrt{3}) \) \( 2^{10} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.741115149$ $10.55342183$ 2.652162765 \( -2002968 a + 3470040 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 118 a - 203\) , \( -849 a + 1470\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(118a-203\right){x}-849a+1470$
1024.1-q1 1024.1-q \(\Q(\sqrt{3}) \) \( 2^{10} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.55342183$ 1.523255234 \( -2002968 a + 3470040 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 10 a - 11\) , \( -23 a + 38\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(10a-11\right){x}-23a+38$
1024.1-r1 1024.1-r \(\Q(\sqrt{3}) \) \( 2^{10} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.741115149$ $5.276710919$ 2.652162765 \( -2002968 a + 3470040 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 118 a - 203\) , \( 849 a - 1470\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(118a-203\right){x}+849a-1470$
4608.1-a1 4608.1-a \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.308416424$ 2.487465382 \( -2002968 a + 3470040 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 660 a - 1143\) , \( 12144 a - 21034\bigr] \) ${y}^2={x}^{3}+\left(660a-1143\right){x}+12144a-21034$
4608.1-f1 4608.1-f \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.442267495$ $4.308416424$ 3.587590466 \( -2002968 a + 3470040 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 9192 a - 15921\) , \( 631254 a - 1093364\bigr] \) ${y}^2={x}^{3}+\left(9192a-15921\right){x}+631254a-1093364$
4608.1-bb1 4608.1-bb \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.616832848$ 2.487465382 \( -2002968 a + 3470040 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 9192 a - 15921\) , \( -631254 a + 1093364\bigr] \) ${y}^2={x}^{3}+\left(9192a-15921\right){x}-631254a+1093364$
4608.1-be1 4608.1-be \(\Q(\sqrt{3}) \) \( 2^{9} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.442267495$ $8.616832848$ 3.587590466 \( -2002968 a + 3470040 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 660 a - 1143\) , \( -12144 a + 21034\bigr] \) ${y}^2={x}^{3}+\left(660a-1143\right){x}-12144a+21034$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.