Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
50.3-f1
50.3-f
$2$
$5$
\(\Q(\sqrt{26}) \)
$2$
$[2, 0]$
50.3
\( 2 \cdot 5^{2} \)
\( - 2^{14} \cdot 5^{8} \)
$2.42325$
$(2,a), (5,a+1)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$5$
5B
$1$
\( 2 \cdot 3 \)
$0.098495863$
$22.13612461$
2.565571704
\( -\frac{88209}{2} a + \frac{444501}{2} \)
\( \bigl[a\) , \( 1\) , \( 0\) , \( -1633 a - 8308\) , \( 100258 a + 511233\bigr] \)
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-1633a-8308\right){x}+100258a+511233$
50.3-k1
50.3-k
$2$
$5$
\(\Q(\sqrt{26}) \)
$2$
$[2, 0]$
50.3
\( 2 \cdot 5^{2} \)
\( - 2^{2} \cdot 5^{8} \)
$2.42325$
$(2,a), (5,a+1)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$5$
5B
$1$
\( 2 \)
$1$
$22.13612461$
4.341251205
\( -\frac{88209}{2} a + \frac{444501}{2} \)
\( \bigl[1\) , \( -1\) , \( 1\) , \( 13 a - 67\) , \( -61 a + 311\bigr] \)
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(13a-67\right){x}-61a+311$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.