Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
50.3-g1
50.3-g
$1$
$1$
\(\Q(\sqrt{26}) \)
$2$
$[2, 0]$
50.3
\( 2 \cdot 5^{2} \)
\( - 2^{16} \cdot 5^{2} \)
$2.42325$
$(2,a), (5,a+1)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$1$
\( 2 \)
$1$
$10.35008641$
2.029818946
\( -\frac{381845}{4} a - \frac{1902655}{4} \)
\( \bigl[a\) , \( a + 1\) , \( 0\) , \( -1110 a - 5658\) , \( -50480 a - 257398\bigr] \)
${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-1110a-5658\right){x}-50480a-257398$
50.3-j1
50.3-j
$1$
$1$
\(\Q(\sqrt{26}) \)
$2$
$[2, 0]$
50.3
\( 2 \cdot 5^{2} \)
\( - 2^{4} \cdot 5^{2} \)
$2.42325$
$(2,a), (5,a+1)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$1$
\( 2^{2} \)
$0.705097487$
$10.35008641$
5.724880954
\( -\frac{381845}{4} a - \frac{1902655}{4} \)
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( 2 a - 13\) , \( -4 a + 11\bigr] \)
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(2a-13\right){x}-4a+11$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.