Learn more

Refine search


Results (displaying both matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
50.3-g1 50.3-g \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $10.35008641$ 2.029818946 \( -\frac{381845}{4} a - \frac{1902655}{4} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( -1110 a - 5658\) , \( -50480 a - 257398\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-1110a-5658\right){x}-50480a-257398$
50.3-j1 50.3-j \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.705097487$ $10.35008641$ 5.724880954 \( -\frac{381845}{4} a - \frac{1902655}{4} \) \( \bigl[1\) , \( 1\) , \( a + 1\) , \( 2 a - 13\) , \( -4 a + 11\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(2a-13\right){x}-4a+11$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.