Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
32.1-a3 |
32.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
32.1 |
\( 2^{5} \) |
\( 2^{6} \) |
$0.60113$ |
$(a)$ |
0 |
$\Z/4\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
|
|
$1$ |
\( 2 \) |
$1$ |
$6.875185818$ |
0.607686314 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -2\) , \( 3\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-2{x}+3$ |
32.1-a4 |
32.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
32.1 |
\( 2^{5} \) |
\( 2^{6} \) |
$0.60113$ |
$(a)$ |
0 |
$\Z/4\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
|
|
$1$ |
\( 2 \) |
$1$ |
$6.875185818$ |
0.607686314 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( -1\) , \( 0\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-{x}$ |
1024.1-b3 |
1024.1-b |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
1024.1 |
\( 2^{10} \) |
\( 2^{24} \) |
$1.42974$ |
$(a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$0.608709031$ |
$2.430745256$ |
2.092493851 |
\( 287496 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 22\) , \( -28 a\bigr] \) |
${y}^2={x}^{3}+22{x}-28a$ |
1024.1-b4 |
1024.1-b |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
1024.1 |
\( 2^{10} \) |
\( 2^{24} \) |
$1.42974$ |
$(a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$0.608709031$ |
$2.430745256$ |
2.092493851 |
\( 287496 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 22\) , \( 28 a\bigr] \) |
${y}^2={x}^{3}+22{x}+28a$ |
2304.1-b3 |
2304.1-b |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
2304.1 |
\( 2^{8} \cdot 3^{2} \) |
\( 2^{18} \cdot 3^{6} \) |
$1.75107$ |
$(a), (-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$1.984695191$ |
1.403391428 |
\( 287496 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -22 a + 11\) , \( 14 a - 70\bigr] \) |
${y}^2={x}^{3}+\left(-22a+11\right){x}+14a-70$ |
2304.1-b4 |
2304.1-b |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
2304.1 |
\( 2^{8} \cdot 3^{2} \) |
\( 2^{18} \cdot 3^{6} \) |
$1.75107$ |
$(a), (-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$1.984695191$ |
1.403391428 |
\( 287496 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -22 a + 11\) , \( -14 a + 70\bigr] \) |
${y}^2={x}^{3}+\left(-22a+11\right){x}-14a+70$ |
2304.3-b3 |
2304.3-b |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
2304.3 |
\( 2^{8} \cdot 3^{2} \) |
\( 2^{18} \cdot 3^{6} \) |
$1.75107$ |
$(a), (a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$1.984695191$ |
1.403391428 |
\( 287496 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 22 a + 11\) , \( -14 a - 70\bigr] \) |
${y}^2={x}^{3}+\left(22a+11\right){x}-14a-70$ |
2304.3-b4 |
2304.3-b |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
2304.3 |
\( 2^{8} \cdot 3^{2} \) |
\( 2^{18} \cdot 3^{6} \) |
$1.75107$ |
$(a), (a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$1.984695191$ |
1.403391428 |
\( 287496 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 22 a + 11\) , \( 14 a + 70\bigr] \) |
${y}^2={x}^{3}+\left(22a+11\right){x}+14a+70$ |
2592.3-d3 |
2592.3-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
2592.3 |
\( 2^{5} \cdot 3^{4} \) |
\( 2^{6} \cdot 3^{12} \) |
$1.80340$ |
$(a), (-a-1), (a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$0.444312937$ |
$2.291728606$ |
2.880030840 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -24\) , \( -35\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-24{x}-35$ |
2592.3-d4 |
2592.3-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
2592.3 |
\( 2^{5} \cdot 3^{4} \) |
\( 2^{6} \cdot 3^{12} \) |
$1.80340$ |
$(a), (-a-1), (a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$0.444312937$ |
$2.291728606$ |
2.880030840 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( -23\) , \( 60\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-23{x}+60$ |
9216.1-d3 |
9216.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{24} \cdot 3^{6} \) |
$2.47639$ |
$(a), (-a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$1.832015163$ |
$1.403391428$ |
3.635991684 |
\( 287496 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 44 a - 22\) , \( -140 a - 56\bigr] \) |
${y}^2={x}^{3}+\left(44a-22\right){x}-140a-56$ |
9216.1-d4 |
9216.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{24} \cdot 3^{6} \) |
$2.47639$ |
$(a), (-a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$1.832015163$ |
$1.403391428$ |
3.635991684 |
\( 287496 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 44 a - 22\) , \( 140 a + 56\bigr] \) |
${y}^2={x}^{3}+\left(44a-22\right){x}+140a+56$ |
9216.3-d3 |
9216.3-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
9216.3 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{24} \cdot 3^{6} \) |
$2.47639$ |
$(a), (a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$1.832015163$ |
$1.403391428$ |
3.635991684 |
\( 287496 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -44 a - 22\) , \( 140 a - 56\bigr] \) |
${y}^2={x}^{3}+\left(-44a-22\right){x}+140a-56$ |
9216.3-d4 |
9216.3-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
9216.3 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{24} \cdot 3^{6} \) |
$2.47639$ |
$(a), (a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$1.832015163$ |
$1.403391428$ |
3.635991684 |
\( 287496 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -44 a - 22\) , \( -140 a + 56\bigr] \) |
${y}^2={x}^{3}+\left(-44a-22\right){x}-140a+56$ |
9248.1-a3 |
9248.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
9248.1 |
\( 2^{5} \cdot 17^{2} \) |
\( 2^{6} \cdot 17^{6} \) |
$2.47854$ |
$(a), (-2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$0.719213649$ |
$1.667477489$ |
3.392055068 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 33 a - 2\) , \( 50 a + 80\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(33a-2\right){x}+50a+80$ |
9248.1-a4 |
9248.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
9248.1 |
\( 2^{5} \cdot 17^{2} \) |
\( 2^{6} \cdot 17^{6} \) |
$2.47854$ |
$(a), (-2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$0.719213649$ |
$1.667477489$ |
3.392055068 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( 33 a - 1\) , \( -83 a - 77\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(33a-1\right){x}-83a-77$ |
9248.3-a3 |
9248.3-a |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
9248.3 |
\( 2^{5} \cdot 17^{2} \) |
\( 2^{6} \cdot 17^{6} \) |
$2.47854$ |
$(a), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$0.719213649$ |
$1.667477489$ |
3.392055068 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -33 a - 2\) , \( -50 a + 80\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-33a-2\right){x}-50a+80$ |
9248.3-a4 |
9248.3-a |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
9248.3 |
\( 2^{5} \cdot 17^{2} \) |
\( 2^{6} \cdot 17^{6} \) |
$2.47854$ |
$(a), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$0.719213649$ |
$1.667477489$ |
3.392055068 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( -33 a - 1\) , \( 83 a - 77\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-33a-1\right){x}+83a-77$ |
20000.1-g3 |
20000.1-g |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
20000.1 |
\( 2^{5} \cdot 5^{4} \) |
\( 2^{6} \cdot 5^{12} \) |
$3.00567$ |
$(a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$0.949741086$ |
$1.375037163$ |
3.693725825 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -68\) , \( 253\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-68{x}+253$ |
20000.1-g4 |
20000.1-g |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
20000.1 |
\( 2^{5} \cdot 5^{4} \) |
\( 2^{6} \cdot 5^{12} \) |
$3.00567$ |
$(a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$0.949741086$ |
$1.375037163$ |
3.693725825 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( -67\) , \( -184\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-67{x}-184$ |
30976.1-d3 |
30976.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
30976.1 |
\( 2^{8} \cdot 11^{2} \) |
\( 2^{18} \cdot 11^{6} \) |
$3.35305$ |
$(a), (a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$1.036473260$ |
0.732897270 |
\( 287496 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -66 a - 77\) , \( -350 a - 126\bigr] \) |
${y}^2={x}^{3}+\left(-66a-77\right){x}-350a-126$ |
30976.1-d4 |
30976.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
30976.1 |
\( 2^{8} \cdot 11^{2} \) |
\( 2^{18} \cdot 11^{6} \) |
$3.35305$ |
$(a), (a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$1.036473260$ |
0.732897270 |
\( 287496 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -66 a - 77\) , \( 350 a + 126\bigr] \) |
${y}^2={x}^{3}+\left(-66a-77\right){x}+350a+126$ |
30976.3-d3 |
30976.3-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
30976.3 |
\( 2^{8} \cdot 11^{2} \) |
\( 2^{18} \cdot 11^{6} \) |
$3.35305$ |
$(a), (a-3)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$1.036473260$ |
0.732897270 |
\( 287496 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 66 a - 77\) , \( 350 a - 126\bigr] \) |
${y}^2={x}^{3}+\left(66a-77\right){x}+350a-126$ |
30976.3-d4 |
30976.3-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
30976.3 |
\( 2^{8} \cdot 11^{2} \) |
\( 2^{18} \cdot 11^{6} \) |
$3.35305$ |
$(a), (a-3)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$1.036473260$ |
0.732897270 |
\( 287496 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 66 a - 77\) , \( -350 a + 126\bigr] \) |
${y}^2={x}^{3}+\left(66a-77\right){x}-350a+126$ |
34848.1-e3 |
34848.1-e |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
34848.1 |
\( 2^{5} \cdot 3^{2} \cdot 11^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 11^{6} \) |
$3.45325$ |
$(a), (-a-1), (a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$1$ |
$1.196816231$ |
1.692553746 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( -22 a + 87\) , \( 214 a + 124\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-22a+87\right){x}+214a+124$ |
34848.1-e4 |
34848.1-e |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
34848.1 |
\( 2^{5} \cdot 3^{2} \cdot 11^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 11^{6} \) |
$3.45325$ |
$(a), (-a-1), (a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$1$ |
$1.196816231$ |
1.692553746 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -22 a + 86\) , \( -192 a - 209\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-22a+86\right){x}-192a-209$ |
34848.3-c3 |
34848.3-c |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
34848.3 |
\( 2^{5} \cdot 3^{2} \cdot 11^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 11^{6} \) |
$3.45325$ |
$(a), (-a-1), (a-3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$1.444552372$ |
$1.196816231$ |
4.889965060 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( -55 a - 45\) , \( -207 a + 15\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-55a-45\right){x}-207a+15$ |
34848.3-c4 |
34848.3-c |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
34848.3 |
\( 2^{5} \cdot 3^{2} \cdot 11^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 11^{6} \) |
$3.45325$ |
$(a), (-a-1), (a-3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$1.444552372$ |
$1.196816231$ |
4.889965060 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -55 a - 46\) , \( 262 a + 32\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-55a-46\right){x}+262a+32$ |
34848.7-c3 |
34848.7-c |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
34848.7 |
\( 2^{5} \cdot 3^{2} \cdot 11^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 11^{6} \) |
$3.45325$ |
$(a), (a-1), (a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$1.444552372$ |
$1.196816231$ |
4.889965060 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 55 a - 46\) , \( -262 a + 32\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(55a-46\right){x}-262a+32$ |
34848.7-c4 |
34848.7-c |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
34848.7 |
\( 2^{5} \cdot 3^{2} \cdot 11^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 11^{6} \) |
$3.45325$ |
$(a), (a-1), (a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$1.444552372$ |
$1.196816231$ |
4.889965060 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( 55 a - 45\) , \( 207 a + 15\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(55a-45\right){x}+207a+15$ |
34848.9-g3 |
34848.9-g |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
34848.9 |
\( 2^{5} \cdot 3^{2} \cdot 11^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 11^{6} \) |
$3.45325$ |
$(a), (a-1), (a-3)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$1$ |
$1.196816231$ |
1.692553746 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 22 a + 86\) , \( 192 a - 209\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(22a+86\right){x}+192a-209$ |
34848.9-g4 |
34848.9-g |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
34848.9 |
\( 2^{5} \cdot 3^{2} \cdot 11^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 11^{6} \) |
$3.45325$ |
$(a), (a-1), (a-3)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-16$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{3} \) |
$1$ |
$1.196816231$ |
1.692553746 |
\( 287496 \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( 22 a + 87\) , \( -214 a + 124\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(22a+87\right){x}-214a+124$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.