Learn more

Refine search


Results (32 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
32.1-a3 32.1-a \(\Q(\sqrt{-2}) \) \( 2^{5} \) 0 $\Z/4\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $6.875185818$ 0.607686314 \( 287496 \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -2\) , \( 3\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-2{x}+3$
32.1-a4 32.1-a \(\Q(\sqrt{-2}) \) \( 2^{5} \) 0 $\Z/4\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $6.875185818$ 0.607686314 \( 287496 \) \( \bigl[a\) , \( -1\) , \( a\) , \( -1\) , \( 0\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-{x}$
1024.1-b3 1024.1-b \(\Q(\sqrt{-2}) \) \( 2^{10} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $0.608709031$ $2.430745256$ 2.092493851 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 22\) , \( -28 a\bigr] \) ${y}^2={x}^{3}+22{x}-28a$
1024.1-b4 1024.1-b \(\Q(\sqrt{-2}) \) \( 2^{10} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $0.608709031$ $2.430745256$ 2.092493851 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 22\) , \( 28 a\bigr] \) ${y}^2={x}^{3}+22{x}+28a$
2304.1-b3 2304.1-b \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $1.984695191$ 1.403391428 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -22 a + 11\) , \( 14 a - 70\bigr] \) ${y}^2={x}^{3}+\left(-22a+11\right){x}+14a-70$
2304.1-b4 2304.1-b \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $1.984695191$ 1.403391428 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -22 a + 11\) , \( -14 a + 70\bigr] \) ${y}^2={x}^{3}+\left(-22a+11\right){x}-14a+70$
2304.3-b3 2304.3-b \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $1.984695191$ 1.403391428 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 22 a + 11\) , \( -14 a - 70\bigr] \) ${y}^2={x}^{3}+\left(22a+11\right){x}-14a-70$
2304.3-b4 2304.3-b \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $1.984695191$ 1.403391428 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 22 a + 11\) , \( 14 a + 70\bigr] \) ${y}^2={x}^{3}+\left(22a+11\right){x}+14a+70$
2592.3-d3 2592.3-d \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $0.444312937$ $2.291728606$ 2.880030840 \( 287496 \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -24\) , \( -35\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-24{x}-35$
2592.3-d4 2592.3-d \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $0.444312937$ $2.291728606$ 2.880030840 \( 287496 \) \( \bigl[a\) , \( -1\) , \( a\) , \( -23\) , \( 60\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-23{x}+60$
9216.1-d3 9216.1-d \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1.832015163$ $1.403391428$ 3.635991684 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 44 a - 22\) , \( -140 a - 56\bigr] \) ${y}^2={x}^{3}+\left(44a-22\right){x}-140a-56$
9216.1-d4 9216.1-d \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1.832015163$ $1.403391428$ 3.635991684 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 44 a - 22\) , \( 140 a + 56\bigr] \) ${y}^2={x}^{3}+\left(44a-22\right){x}+140a+56$
9216.3-d3 9216.3-d \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1.832015163$ $1.403391428$ 3.635991684 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -44 a - 22\) , \( 140 a - 56\bigr] \) ${y}^2={x}^{3}+\left(-44a-22\right){x}+140a-56$
9216.3-d4 9216.3-d \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1.832015163$ $1.403391428$ 3.635991684 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -44 a - 22\) , \( -140 a + 56\bigr] \) ${y}^2={x}^{3}+\left(-44a-22\right){x}-140a+56$
9248.1-a3 9248.1-a \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 17^{2} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $0.719213649$ $1.667477489$ 3.392055068 \( 287496 \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 33 a - 2\) , \( 50 a + 80\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(33a-2\right){x}+50a+80$
9248.1-a4 9248.1-a \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 17^{2} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $0.719213649$ $1.667477489$ 3.392055068 \( 287496 \) \( \bigl[a\) , \( -1\) , \( a\) , \( 33 a - 1\) , \( -83 a - 77\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(33a-1\right){x}-83a-77$
9248.3-a3 9248.3-a \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 17^{2} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $0.719213649$ $1.667477489$ 3.392055068 \( 287496 \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -33 a - 2\) , \( -50 a + 80\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-33a-2\right){x}-50a+80$
9248.3-a4 9248.3-a \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 17^{2} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $0.719213649$ $1.667477489$ 3.392055068 \( 287496 \) \( \bigl[a\) , \( -1\) , \( a\) , \( -33 a - 1\) , \( 83 a - 77\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-33a-1\right){x}+83a-77$
20000.1-g3 20000.1-g \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 5^{4} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $0.949741086$ $1.375037163$ 3.693725825 \( 287496 \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -68\) , \( 253\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-68{x}+253$
20000.1-g4 20000.1-g \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 5^{4} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $0.949741086$ $1.375037163$ 3.693725825 \( 287496 \) \( \bigl[a\) , \( -1\) , \( a\) , \( -67\) , \( -184\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-67{x}-184$
30976.1-d3 30976.1-d \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 11^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $1.036473260$ 0.732897270 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -66 a - 77\) , \( -350 a - 126\bigr] \) ${y}^2={x}^{3}+\left(-66a-77\right){x}-350a-126$
30976.1-d4 30976.1-d \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 11^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $1.036473260$ 0.732897270 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -66 a - 77\) , \( 350 a + 126\bigr] \) ${y}^2={x}^{3}+\left(-66a-77\right){x}+350a+126$
30976.3-d3 30976.3-d \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 11^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $1.036473260$ 0.732897270 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 66 a - 77\) , \( 350 a - 126\bigr] \) ${y}^2={x}^{3}+\left(66a-77\right){x}+350a-126$
30976.3-d4 30976.3-d \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 11^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $1.036473260$ 0.732897270 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 66 a - 77\) , \( -350 a + 126\bigr] \) ${y}^2={x}^{3}+\left(66a-77\right){x}-350a+126$
34848.1-e3 34848.1-e \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $1.196816231$ 1.692553746 \( 287496 \) \( \bigl[a\) , \( -1\) , \( a\) , \( -22 a + 87\) , \( 214 a + 124\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-22a+87\right){x}+214a+124$
34848.1-e4 34848.1-e \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $1.196816231$ 1.692553746 \( 287496 \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -22 a + 86\) , \( -192 a - 209\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-22a+86\right){x}-192a-209$
34848.3-c3 34848.3-c \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1.444552372$ $1.196816231$ 4.889965060 \( 287496 \) \( \bigl[a\) , \( -1\) , \( a\) , \( -55 a - 45\) , \( -207 a + 15\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-55a-45\right){x}-207a+15$
34848.3-c4 34848.3-c \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1.444552372$ $1.196816231$ 4.889965060 \( 287496 \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -55 a - 46\) , \( 262 a + 32\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-55a-46\right){x}+262a+32$
34848.7-c3 34848.7-c \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1.444552372$ $1.196816231$ 4.889965060 \( 287496 \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 55 a - 46\) , \( -262 a + 32\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(55a-46\right){x}-262a+32$
34848.7-c4 34848.7-c \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1.444552372$ $1.196816231$ 4.889965060 \( 287496 \) \( \bigl[a\) , \( -1\) , \( a\) , \( 55 a - 45\) , \( 207 a + 15\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(55a-45\right){x}+207a+15$
34848.9-g3 34848.9-g \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $1.196816231$ 1.692553746 \( 287496 \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 22 a + 86\) , \( 192 a - 209\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(22a+86\right){x}+192a-209$
34848.9-g4 34848.9-g \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $1.196816231$ 1.692553746 \( 287496 \) \( \bigl[a\) , \( -1\) , \( a\) , \( 22 a + 87\) , \( -214 a + 124\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(22a+87\right){x}-214a+124$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.