Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
288.2-a2 288.2-a \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.168950466$ $2.345364298$ 1.120765359 \( \frac{1056226562}{6561} a - \frac{605268760}{6561} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 5 a + 22\) , \( -26 a + 23\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(5a+22\right){x}-26a+23$
288.2-d2 288.2-d \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.345364298$ 1.658422999 \( \frac{1056226562}{6561} a - \frac{605268760}{6561} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( 5 a + 22\) , \( 26 a - 23\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(5a+22\right){x}+26a-23$
2592.3-a2 2592.3-a \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.240339345$ $0.781788099$ 2.742676397 \( \frac{1056226562}{6561} a - \frac{605268760}{6561} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 45 a + 199\) , \( -747 a + 424\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(45a+199\right){x}-747a+424$
2592.3-g2 2592.3-g \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.781788099$ 2.211230666 \( \frac{1056226562}{6561} a - \frac{605268760}{6561} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 45 a + 198\) , \( 702 a - 621\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(45a+198\right){x}+702a-621$
6912.2-f2 6912.2-f \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.677048354$ 1.914981930 \( \frac{1056226562}{6561} a - \frac{605268760}{6561} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 156 a - 168\) , \( 1224 a - 504\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(156a-168\right){x}+1224a-504$
6912.2-i2 6912.2-i \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.265468825$ $0.677048354$ 4.066944035 \( \frac{1056226562}{6561} a - \frac{605268760}{6561} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 156 a - 168\) , \( -1224 a + 504\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(156a-168\right){x}-1224a+504$
6912.3-g2 6912.3-g \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.677048354$ 1.914981930 \( \frac{1056226562}{6561} a - \frac{605268760}{6561} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -196 a - 8\) , \( 856 a - 1336\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-196a-8\right){x}+856a-1336$
6912.3-h2 6912.3-h \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.061875302$ $0.677048354$ 4.066944035 \( \frac{1056226562}{6561} a - \frac{605268760}{6561} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -196 a - 8\) , \( -856 a + 1336\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-196a-8\right){x}-856a+1336$
9216.2-k2 9216.2-k \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.829211499$ 2.345364298 \( \frac{1056226562}{6561} a - \frac{605268760}{6561} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -40 a - 176\) , \( -368 a - 832\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-40a-176\right){x}-368a-832$
9216.2-s2 9216.2-s \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.829211499$ 2.345364298 \( \frac{1056226562}{6561} a - \frac{605268760}{6561} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -40 a - 176\) , \( 368 a + 832\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-40a-176\right){x}+368a+832$
27648.2-g2 27648.2-g \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.744183548$ $0.478745482$ 3.715889911 \( \frac{1056226562}{6561} a - \frac{605268760}{6561} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -310 a + 335\) , \( 697 a + 5231\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-310a+335\right){x}+697a+5231$
27648.2-bo2 27648.2-bo \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.478745482$ 2.708193418 \( \frac{1056226562}{6561} a - \frac{605268760}{6561} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -310 a + 335\) , \( -697 a - 5231\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-310a+335\right){x}-697a-5231$
27648.3-t2 27648.3-t \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.686045887$ $0.478745482$ 3.715889911 \( \frac{1056226562}{6561} a - \frac{605268760}{6561} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 390 a + 15\) , \( -2281 a - 3409\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(390a+15\right){x}-2281a-3409$
27648.3-bd2 27648.3-bd \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.478745482$ 2.708193418 \( \frac{1056226562}{6561} a - \frac{605268760}{6561} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 390 a + 15\) , \( 2281 a + 3409\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(390a+15\right){x}+2281a+3409$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.