Learn more

Refine search


Results (20 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
288.2-b6 288.2-b \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.125470044$ 1.606704330 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( 14 a - 20\) , \( 28 a - 20\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(14a-20\right){x}+28a-20$
288.5-b6 288.5-b \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.125470044$ 1.606704330 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -18 a + 15\) , \( 13 a - 31\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-18a+15\right){x}+13a-31$
1152.2-a6 1152.2-a \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.502934281$ 1.136111527 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -34 a + 12\) , \( 64 a - 96\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-34a+12\right){x}+64a-96$
1152.7-a6 1152.7-a \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.502934281$ 1.136111527 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 18 a - 50\) , \( 44 a - 148\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(18a-50\right){x}+44a-148$
1764.2-a6 1764.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.269015745$ $1.606704330$ 1.306936936 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( 13 a + 28\) , \( -62 a + 112\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(13a+28\right){x}-62a+112$
2592.2-a6 2592.2-a \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.708490014$ 1.071136220 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 127 a - 179\) , \( -883 a + 721\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(127a-179\right){x}-883a+721$
2592.5-a6 2592.5-a \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.708490014$ 1.071136220 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -144 a + 144\) , \( -236 a + 1288\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-144a+144\right){x}-236a+1288$
4356.4-d6 4356.4-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.208247137$ $1.281706661$ 3.228261005 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( 46 a - 37\) , \( -135 a - 43\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(46a-37\right){x}-135a-43$
4356.6-b6 4356.6-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.832988549$ $1.281706661$ 3.228261005 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( -33 a + 60\) , \( 45 a + 198\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-33a+60\right){x}+45a+198$
9216.5-d6 9216.5-d \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.751467140$ 1.136111527 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -32 a + 192\) , \( -608 a + 32\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-32a+192\right){x}-608a+32$
9216.7-d6 9216.7-d \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.751467140$ 1.136111527 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 128 a\) , \( 172 a + 732\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+128a{x}+172a+732$
10368.2-d5 10368.2-d \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{4} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $3.460346237$ $0.500978093$ 5.241785665 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -306 a + 108\) , \( -1728 a + 2592\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-306a+108\right){x}-1728a+2592$
10368.7-d5 10368.7-d \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{4} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.865086559$ $0.500978093$ 5.241785665 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 144 a - 433\) , \( -1616 a + 2959\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(144a-433\right){x}-1616a+2959$
15876.2-i5 15876.2-i \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.535568110$ 6.477622992 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 126 a + 253\) , \( 1414 a - 2509\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(126a+253\right){x}+1414a-2509$
19044.4-c5 19044.4-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 23^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.886382281$ 5.360336192 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[1\) , \( -a\) , \( a\) , \( 62 a - 133\) , \( 394 a - 449\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(62a-133\right){x}+394a-449$
19044.6-c5 19044.6-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 23^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.886382281$ 5.360336192 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( -98 a + 59\) , \( 298 a - 661\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-98a+59\right){x}+298a-661$
36864.7-m5 36864.7-m \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $3.112402320$ $0.531367511$ 5.000710286 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -128 a - 257\) , \( 1376 a + 1377\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-128a-257\right){x}+1376a+1377$
36864.7-t5 36864.7-t \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $3.112402320$ $0.531367511$ 5.000710286 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -128 a - 257\) , \( -1376 a - 1377\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-128a-257\right){x}-1376a-1377$
39204.4-b5 39204.4-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.300555330$ $0.427235553$ 5.943893680 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 415 a - 324\) , \( 3319 a + 650\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(415a-324\right){x}+3319a+650$
39204.6-d5 39204.6-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.575138832$ $0.427235553$ 5.943893680 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -308 a + 541\) , \( -1282 a - 4197\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-308a+541\right){x}-1282a-4197$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.