Learn more

Refine search


Results (15 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
288.2-a2 288.2-a \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.065967243$ $4.775104742$ 0.952471978 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -a - 1\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-a-1\right){x}$
1152.2-b2 1152.2-b \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.376508944$ 2.552400847 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 4\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+4{x}$
1152.5-b2 1152.5-b \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.387552371$ 1.804819947 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -5 a + 7\) , \( 0\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-5a+7\right){x}$
2592.2-b2 2592.2-b \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{4} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.591701580$ 2.406426596 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -9 a - 9\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-9a-9\right){x}$
4608.7-a2 4608.7-a \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.688254472$ 1.276200423 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 3 a - 18\) , \( 3 a - 18\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(3a-18\right){x}+3a-18$
7056.2-b2 7056.2-b \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.804819947$ 2.728631281 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 7 a + 7\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(7a+7\right){x}$
9216.5-c2 9216.5-c \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.318030242$ $1.688254472$ 3.246962639 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 14 a - 5\) , \( -13 a + 5\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(14a-5\right){x}-13a+5$
9216.7-i2 9216.7-i \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.688254472$ 2.552400847 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 3 a - 18\) , \( -3 a + 18\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(3a-18\right){x}-3a+18$
10368.2-b3 10368.2-b \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.125502981$ 1.701600565 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( a + 40\) , \( -39 a + 1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(a+40\right){x}-39a+1$
10368.5-e3 10368.5-e \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.825423846$ $0.795850790$ 3.972643795 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -48 a + 69\) , \( 20 a + 94\bigr] \) ${y}^2={x}^{3}+\left(-48a+69\right){x}+20a+94$
17424.4-b3 17424.4-b \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.439748251$ 2.176694756 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[a\) , \( -a\) , \( a\) , \( 16 a - 18\) , \( -16 a + 19\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(16a-18\right){x}-16a+19$
17424.6-b3 17424.6-b \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.439748251$ 2.176694756 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( -9 a + 25\) , \( 15 a + 19\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-9a+25\right){x}+15a+19$
36864.7-a3 36864.7-a \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.193776185$ 1.804819947 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -21 a + 30\) , \( 9 a + 42\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-21a+30\right){x}+9a+42$
36864.7-w3 36864.7-w \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.193776185$ 1.804819947 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -21 a + 30\) , \( -9 a - 42\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-21a+30\right){x}-9a-42$
41472.7-b3 41472.7-b \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.562751490$ 0.850800282 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 27 a - 165\) , \( -54 a + 322\bigr] \) ${y}^2={x}^{3}+\left(27a-165\right){x}-54a+322$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.