Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
576.4-a5 576.4-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.817673508$ 1.374032019 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -64\) , \( 220\bigr] \) ${y}^2={x}^{3}-{x}^{2}-64{x}+220$
2304.5-a5 2304.5-a \(\Q(\sqrt{-7}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.817673508$ 1.374032019 \( \frac{28756228}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -64\) , \( -220\bigr] \) ${y}^2={x}^{3}+{x}^{2}-64{x}-220$
4608.4-c5 4608.4-c \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.578217810$ $1.285289264$ 3.066752947 \( \frac{28756228}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -64 a + 128\) , \( 220 a + 440\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-64a+128\right){x}+220a+440$
4608.7-b5 4608.7-b \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.578217810$ $1.285289264$ 3.066752947 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 64 a + 64\) , \( -220 a + 660\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(64a+64\right){x}-220a+660$
5184.4-a5 5184.4-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.818877155$ $0.605891169$ 3.000435819 \( \frac{28756228}{3} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -579\) , \( -5362\bigr] \) ${y}^2={x}^{3}-579{x}-5362$
9216.5-e5 9216.5-e \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.285289264$ 1.943174717 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -64 a + 128\) , \( -220 a - 440\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-64a+128\right){x}-220a-440$
9216.7-g5 9216.7-g \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.285289264$ 1.943174717 \( \frac{28756228}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 64 a + 64\) , \( 220 a - 660\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(64a+64\right){x}+220a-660$
20736.5-c5 20736.5-c \(\Q(\sqrt{-7}) \) \( 2^{8} \cdot 3^{4} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $5.162318219$ $0.605891169$ 4.728793686 \( \frac{28756228}{3} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -579\) , \( 5362\bigr] \) ${y}^2={x}^{3}-579{x}+5362$
36864.7-l5 36864.7-l \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 3^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.592914450$ $0.908836754$ 7.125494960 \( \frac{28756228}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -257\) , \( 1503\bigr] \) ${y}^2={x}^{3}+{x}^{2}-257{x}+1503$
36864.7-u5 36864.7-u \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.908836754$ 2.748064039 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -257\) , \( -1503\bigr] \) ${y}^2={x}^{3}-{x}^{2}-257{x}-1503$
41472.4-d5 41472.4-d \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.428429754$ 2.590899623 \( \frac{28756228}{3} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -579 a + 1158\) , \( -5362 a - 10724\bigr] \) ${y}^2={x}^{3}+\left(-579a+1158\right){x}-5362a-10724$
41472.7-h5 41472.7-h \(\Q(\sqrt{-7}) \) \( 2^{9} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.428429754$ 2.590899623 \( \frac{28756228}{3} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 579 a + 579\) , \( 5362 a - 16086\bigr] \) ${y}^2={x}^{3}+\left(579a+579\right){x}+5362a-16086$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.