Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
576.4-a5 |
576.4-a |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
576.4 |
\( 2^{6} \cdot 3^{2} \) |
\( 2^{20} \cdot 3^{2} \) |
$1.15823$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$1.817673508$ |
1.374032019 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -64\) , \( 220\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-64{x}+220$ |
2304.5-a5 |
2304.5-a |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
2304.5 |
\( 2^{8} \cdot 3^{2} \) |
\( 2^{20} \cdot 3^{2} \) |
$1.63798$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$1.817673508$ |
1.374032019 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -64\) , \( -220\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-64{x}-220$ |
4608.4-c5 |
4608.4-c |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
4608.4 |
\( 2^{9} \cdot 3^{2} \) |
\( 2^{26} \cdot 3^{2} \) |
$1.94790$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.578217810$ |
$1.285289264$ |
3.066752947 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -64 a + 128\) , \( 220 a + 440\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-64a+128\right){x}+220a+440$ |
4608.7-b5 |
4608.7-b |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
4608.7 |
\( 2^{9} \cdot 3^{2} \) |
\( 2^{26} \cdot 3^{2} \) |
$1.94790$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.578217810$ |
$1.285289264$ |
3.066752947 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 64 a + 64\) , \( -220 a + 660\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(64a+64\right){x}-220a+660$ |
5184.4-a5 |
5184.4-a |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
5184.4 |
\( 2^{6} \cdot 3^{4} \) |
\( 2^{20} \cdot 3^{14} \) |
$2.00611$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.818877155$ |
$0.605891169$ |
3.000435819 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -579\) , \( -5362\bigr] \) |
${y}^2={x}^{3}-579{x}-5362$ |
9216.5-e5 |
9216.5-e |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{26} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.285289264$ |
1.943174717 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -64 a + 128\) , \( -220 a - 440\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(-64a+128\right){x}-220a-440$ |
9216.7-g5 |
9216.7-g |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.7 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{26} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.285289264$ |
1.943174717 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( 64 a + 64\) , \( 220 a - 660\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(64a+64\right){x}+220a-660$ |
20736.5-c5 |
20736.5-c |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
20736.5 |
\( 2^{8} \cdot 3^{4} \) |
\( 2^{20} \cdot 3^{14} \) |
$2.83706$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$5.162318219$ |
$0.605891169$ |
4.728793686 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -579\) , \( 5362\bigr] \) |
${y}^2={x}^{3}-579{x}+5362$ |
36864.7-l5 |
36864.7-l |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36864.7 |
\( 2^{12} \cdot 3^{2} \) |
\( 2^{32} \cdot 3^{2} \) |
$3.27596$ |
$(a), (-a+1), (3)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$2.592914450$ |
$0.908836754$ |
7.125494960 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -257\) , \( 1503\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-257{x}+1503$ |
36864.7-u5 |
36864.7-u |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36864.7 |
\( 2^{12} \cdot 3^{2} \) |
\( 2^{32} \cdot 3^{2} \) |
$3.27596$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.908836754$ |
2.748064039 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -257\) , \( -1503\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-257{x}-1503$ |
41472.4-d5 |
41472.4-d |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
41472.4 |
\( 2^{9} \cdot 3^{4} \) |
\( 2^{26} \cdot 3^{14} \) |
$3.37385$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$1$ |
$0.428429754$ |
2.590899623 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -579 a + 1158\) , \( -5362 a - 10724\bigr] \) |
${y}^2={x}^{3}+\left(-579a+1158\right){x}-5362a-10724$ |
41472.7-h5 |
41472.7-h |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
41472.7 |
\( 2^{9} \cdot 3^{4} \) |
\( 2^{26} \cdot 3^{14} \) |
$3.37385$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$1$ |
$0.428429754$ |
2.590899623 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 579 a + 579\) , \( 5362 a - 16086\bigr] \) |
${y}^2={x}^{3}+\left(579a+579\right){x}+5362a-16086$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.