Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
9216.6-a2 9216.6-a \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.690728597$ 1.772928762 \( \frac{21952}{9} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -2\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}-2{x}$
9216.6-d2 9216.6-d \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.690728597$ 1.772928762 \( \frac{21952}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -2\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}-2{x}$
18432.6-a2 18432.6-a \(\Q(\sqrt{-7}) \) \( 2^{11} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.699969091$ $3.316845999$ 3.510064866 \( \frac{21952}{9} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -2 a + 4\) , \( 0\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-2a+4\right){x}$
18432.6-j2 18432.6-j \(\Q(\sqrt{-7}) \) \( 2^{11} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.316845999$ 2.507299900 \( \frac{21952}{9} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -2 a + 4\) , \( 0\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-2a+4\right){x}$
18432.7-c2 18432.7-c \(\Q(\sqrt{-7}) \) \( 2^{11} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.699969091$ $3.316845999$ 3.510064866 \( \frac{21952}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2 a + 2\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2a+2\right){x}$
18432.7-h2 18432.7-h \(\Q(\sqrt{-7}) \) \( 2^{11} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.316845999$ 2.507299900 \( \frac{21952}{9} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 2 a + 2\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(2a+2\right){x}$
36864.7-c2 36864.7-c \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 3^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.457259882$ $2.345364298$ 6.485513576 \( \frac{21952}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -9\) , \( 9\bigr] \) ${y}^2={x}^{3}-{x}^{2}-9{x}+9$
36864.7-bb2 36864.7-bb \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.345364298$ 3.545857524 \( \frac{21952}{9} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -9\) , \( -9\bigr] \) ${y}^2={x}^{3}+{x}^{2}-9{x}-9$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.