Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
64.1-a1
64.1-a
$1$
$1$
\(\Q(\sqrt{-13}) \)
$2$
$[0, 1]$
64.1
\( 2^{6} \)
\( 2^{6} \)
$1.82257$
$(2,a+1)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$3$
3Cn
$1$
\( 1 \)
$1$
$7.681576726$
2.130486058
\( -74088 \)
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -4 a + 1\) , \( 10\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+a{x}^2+\left(-4a+1\right){x}+10$
64.1-c1
64.1-c
$1$
$1$
\(\Q(\sqrt{-13}) \)
$2$
$[0, 1]$
64.1
\( 2^{6} \)
\( 2^{6} \)
$1.82257$
$(2,a+1)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$3$
3Cn
$1$
\( 1 \)
$1$
$7.681576726$
2.130486058
\( -74088 \)
\( \bigl[a + 1\) , \( a\) , \( 0\) , \( -3 a - 5\) , \( a + 7\bigr] \)
${y}^2+\left(a+1\right){x}{y}={x}^3+a{x}^2+\left(-3a-5\right){x}+a+7$
256.1-b1
256.1-b
$1$
$1$
\(\Q(\sqrt{-13}) \)
$2$
$[0, 1]$
256.1
\( 2^{8} \)
\( 2^{18} \)
$2.57751$
$(2,a+1)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$3$
3Cn
$1$
\( 2 \)
$1$
$3.840788363$
2.130486058
\( -74088 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 7\) , \( -2 a\bigr] \)
${y}^2={x}^3+7{x}-2a$
256.1-d1
256.1-d
$1$
$1$
\(\Q(\sqrt{-13}) \)
$2$
$[0, 1]$
256.1
\( 2^{8} \)
\( 2^{18} \)
$2.57751$
$(2,a+1)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$3$
3Cn
$1$
\( 2 \)
$1$
$3.840788363$
2.130486058
\( -74088 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 7\) , \( 2 a\bigr] \)
${y}^2={x}^3+7{x}+2a$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.