Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
64.1-a1 64.1-a \(\Q(\sqrt{-13}) \) \( 2^{6} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $7.681576726$ 2.130486058 \( -74088 \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -4 a + 1\) , \( 10\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+a{x}^2+\left(-4a+1\right){x}+10$
64.1-c1 64.1-c \(\Q(\sqrt{-13}) \) \( 2^{6} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $7.681576726$ 2.130486058 \( -74088 \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -3 a - 5\) , \( a + 7\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^3+a{x}^2+\left(-3a-5\right){x}+a+7$
256.1-b1 256.1-b \(\Q(\sqrt{-13}) \) \( 2^{8} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.840788363$ 2.130486058 \( -74088 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 7\) , \( -2 a\bigr] \) ${y}^2={x}^3+7{x}-2a$
256.1-d1 256.1-d \(\Q(\sqrt{-13}) \) \( 2^{8} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.840788363$ 2.130486058 \( -74088 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 7\) , \( 2 a\bigr] \) ${y}^2={x}^3+7{x}+2a$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.