Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1800.3-a1 1800.3-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.583374277$ 1.583374277 \( \frac{2401}{3} a + \frac{343}{3} \) \( \bigl[i + 1\) , \( -i\) , \( 0\) , \( 14 i + 4\) , \( 26 i + 20\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+\left(14i+4\right){x}+26i+20$
3600.3-a1 3600.3-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.021599395$ $3.540532518$ 1.835360692 \( \frac{2401}{3} a + \frac{343}{3} \) \( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( -3 i + 2\) , \( 2 i + 1\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-3i+2\right){x}+2i+1$
16200.3-a1 16200.3-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.527791425$ 1.055582851 \( \frac{2401}{3} a + \frac{343}{3} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 125 i + 36\) , \( 738 i + 414\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(125i+36\right){x}+738i+414$
32400.3-f1 32400.3-f \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.232411670$ $1.180177506$ 4.388592414 \( \frac{2401}{3} a + \frac{343}{3} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -22 i + 15\) , \( 63 i + 64\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-22i+15\right){x}+63i+64$
45000.3-j1 45000.3-j \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.583374277$ 1.583374277 \( \frac{2401}{3} a + \frac{343}{3} \) \( \bigl[i + 1\) , \( i + 1\) , \( 0\) , \( i - 15\) , \( -26 i - 31\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(i-15\right){x}-26i-31$
57600.3-c1 57600.3-c \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.791687138$ 1.583374277 \( \frac{2401}{3} a + \frac{343}{3} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 56 i + 16\) , \( 208 i + 160\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(56i+16\right){x}+208i+160$
57600.3-q1 57600.3-q \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.770266259$ 3.540532518 \( \frac{2401}{3} a + \frac{343}{3} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -10 i + 7\) , \( -11 i - 15\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-10i+7\right){x}-11i-15$
90000.3-m1 90000.3-m \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.708106503$ 1.416213007 \( \frac{2401}{3} a + \frac{343}{3} \) \( \bigl[i + 1\) , \( 1\) , \( 0\) , \( -58 i + 44\) , \( 246 i + 272\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-58i+44\right){x}+246i+272$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.