Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
33800.8-f1
33800.8-f
$1$
$1$
\(\Q(\sqrt{-1}) \)
$2$
$[0, 1]$
33800.8
\( 2^{3} \cdot 5^{2} \cdot 13^{2} \)
\( 2^{4} \cdot 5^{8} \cdot 13^{2} \)
$2.42325$
$(a+1), (2a+1), (-3a-2), (2a+3)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$1$
\( 2 \cdot 3 \)
$0.146157372$
$2.457669850$
4.310478812
\( \frac{2048}{13} a + \frac{6144}{13} \)
\( \bigl[0\) , \( -i - 1\) , \( i + 1\) , \( 5 i + 3\) , \( -10 i - 2\bigr] \)
${y}^2+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(5i+3\right){x}-10i-2$
67600.8-a1
67600.8-a
$1$
$1$
\(\Q(\sqrt{-1}) \)
$2$
$[0, 1]$
67600.8
\( 2^{4} \cdot 5^{2} \cdot 13^{2} \)
\( 2^{4} \cdot 5^{2} \cdot 13^{2} \)
$2.88174$
$(a+1), (2a+1), (-3a-2), (2a+3)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$1$
\( 1 \)
$0.339946309$
$5.495516853$
3.736361348
\( \frac{2048}{13} a + \frac{6144}{13} \)
\( \bigl[0\) , \( i\) , \( i + 1\) , \( -i\) , \( -i\bigr] \)
${y}^2+\left(i+1\right){y}={x}^{3}+i{x}^{2}-i{x}-i$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.