Learn more

Refine search


Results (20 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
512.1-a3 512.1-a \(\Q(\sqrt{-1}) \) \( 2^{9} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.841522890$ 0.980190361 \( 128 \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -i\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}-i{x}$
512.1-b3 512.1-b \(\Q(\sqrt{-1}) \) \( 2^{9} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.841522890$ 0.980190361 \( 128 \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( i\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+i{x}$
1024.1-a3 1024.1-a \(\Q(\sqrt{-1}) \) \( 2^{10} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.432331164$ $5.544794010$ 1.198593625 \( 128 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 1\) , \( 1\bigr] \) ${y}^2={x}^{3}+{x}^{2}+{x}+1$
1024.1-b3 1024.1-b \(\Q(\sqrt{-1}) \) \( 2^{10} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.544794010$ 1.386198502 \( 128 \) \( \bigl[0\) , \( i\) , \( 0\) , \( -1\) , \( -i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}-{x}-i$
12800.1-a3 12800.1-a \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.763284993$ $3.506835645$ 2.676715022 \( 128 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( i - 1\) , \( -2 i - 2\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(i-1\right){x}-2i-2$
12800.1-c3 12800.1-c \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.506835645$ 1.753417822 \( 128 \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -i + 1\) , \( 2 i - 2\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-i+1\right){x}+2i-2$
12800.3-a3 12800.3-a \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.763284993$ $3.506835645$ 2.676715022 \( 128 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -i - 1\) , \( 2 i - 2\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-i-1\right){x}+2i-2$
12800.3-c3 12800.3-c \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.506835645$ 1.753417822 \( 128 \) \( \bigl[0\) , \( i\) , \( 0\) , \( i + 1\) , \( -2 i - 2\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(i+1\right){x}-2i-2$
25600.1-c3 25600.1-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.656314808$ $2.479707265$ 3.254937196 \( 128 \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 2 i + 2\) , \( -8 i\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(2i+2\right){x}-8i$
25600.1-l3 25600.1-l \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.479707265$ 2.479707265 \( 128 \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -2 i - 2\) , \( -8\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(-2i-2\right){x}-8$
25600.3-c3 25600.3-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.656314808$ $2.479707265$ 3.254937196 \( 128 \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -2 i + 2\) , \( 8 i\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(-2i+2\right){x}+8i$
25600.3-l3 25600.3-l \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.479707265$ 2.479707265 \( 128 \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 2 i - 2\) , \( -8\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(2i-2\right){x}-8$
41472.1-c3 41472.1-c \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 3^{4} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.506155953$ $2.613840963$ 3.936852128 \( 128 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 3 i\) , \( -5 i + 5\bigr] \) ${y}^2={x}^{3}+3i{x}-5i+5$
41472.1-g3 41472.1-g \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 3^{4} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.506155953$ $2.613840963$ 3.936852128 \( 128 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -3 i\) , \( 5 i + 5\bigr] \) ${y}^2={x}^{3}-3i{x}+5i+5$
82944.1-e3 82944.1-e \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.848264670$ 1.848264670 \( 128 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -6\) , \( 20 i\bigr] \) ${y}^2={x}^{3}-6{x}+20i$
82944.1-q3 82944.1-q \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{4} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.632943382$ $1.848264670$ 6.036223124 \( 128 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 6\) , \( -20\bigr] \) ${y}^2={x}^{3}+6{x}-20$
86528.1-a3 86528.1-a \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 13^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.174847142$ 1.087423571 \( 128 \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( i + 4\) , \( 6 i + 12\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(i+4\right){x}+6i+12$
86528.1-b3 86528.1-b \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.903426639$ $2.174847142$ 6.314509131 \( 128 \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -i - 4\) , \( -12 i + 6\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(-i-4\right){x}-12i+6$
86528.3-a3 86528.3-a \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 13^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.174847142$ 1.087423571 \( 128 \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -i + 4\) , \( -6 i + 12\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(-i+4\right){x}-6i+12$
86528.3-b3 86528.3-b \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.903426639$ $2.174847142$ 6.314509131 \( 128 \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( i - 4\) , \( 12 i + 6\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(i-4\right){x}+12i+6$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.