Learn more

Refine search


Results (20 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
512.1-a4 512.1-a \(\Q(\sqrt{-1}) \) \( 2^{9} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.920761445$ 0.980190361 \( 10976 \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 4 i\) , \( -4 i - 4\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+4i{x}-4i-4$
512.1-b4 512.1-b \(\Q(\sqrt{-1}) \) \( 2^{9} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.920761445$ 0.980190361 \( 10976 \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -4 i\) , \( -4 i + 4\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}-4i{x}-4i+4$
1024.1-a4 1024.1-a \(\Q(\sqrt{-1}) \) \( 2^{10} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.216165582$ $5.544794010$ 1.198593625 \( 10976 \) \( \bigl[0\) , \( i\) , \( 0\) , \( 2\) , \( 2 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+2{x}+2i$
1024.1-b4 1024.1-b \(\Q(\sqrt{-1}) \) \( 2^{10} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.544794010$ 1.386198502 \( 10976 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -2\) , \( 2\bigr] \) ${y}^2={x}^{3}-{x}^{2}-2{x}+2$
12800.1-a4 12800.1-a \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.381642496$ $1.753417822$ 2.676715022 \( 10976 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -14 i + 19\) , \( 18 i + 39\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-14i+19\right){x}+18i+39$
12800.1-c4 12800.1-c \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.753417822$ 1.753417822 \( 10976 \) \( \bigl[0\) , \( i\) , \( 0\) , \( 14 i - 19\) , \( -39 i + 18\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(14i-19\right){x}-39i+18$
12800.3-a4 12800.3-a \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.381642496$ $1.753417822$ 2.676715022 \( 10976 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 14 i + 19\) , \( -18 i + 39\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(14i+19\right){x}-18i+39$
12800.3-c4 12800.3-c \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.753417822$ 1.753417822 \( 10976 \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -14 i - 19\) , \( 39 i + 18\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-14i-19\right){x}+39i+18$
25600.1-c4 25600.1-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.312629616$ $2.479707265$ 3.254937196 \( 10976 \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 10 i + 7\) , \( -3 i - 13\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(10i+7\right){x}-3i-13$
25600.1-l4 25600.1-l \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.479707265$ 2.479707265 \( 10976 \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( -10 i - 7\) , \( 13 i - 3\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(-10i-7\right){x}+13i-3$
25600.3-c4 25600.3-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.312629616$ $2.479707265$ 3.254937196 \( 10976 \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( -10 i + 7\) , \( -3 i + 13\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(-10i+7\right){x}-3i+13$
25600.3-l4 25600.3-l \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.479707265$ 2.479707265 \( 10976 \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 10 i - 7\) , \( 13 i + 3\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(10i-7\right){x}+13i+3$
41472.1-c4 41472.1-c \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.753077976$ $1.306920481$ 3.936852128 \( 10976 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -42 i\) , \( 68 i - 68\bigr] \) ${y}^2={x}^{3}-42i{x}+68i-68$
41472.1-g4 41472.1-g \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.753077976$ $1.306920481$ 3.936852128 \( 10976 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 42 i\) , \( -68 i - 68\bigr] \) ${y}^2={x}^{3}+42i{x}-68i-68$
82944.1-e4 82944.1-e \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.848264670$ 1.848264670 \( 10976 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -21\) , \( 34\bigr] \) ${y}^2={x}^{3}-21{x}+34$
82944.1-q4 82944.1-q \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.816471691$ $1.848264670$ 6.036223124 \( 10976 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 21\) , \( 34 i\bigr] \) ${y}^2={x}^{3}+21{x}+34i$
86528.1-a4 86528.1-a \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.087423571$ 1.087423571 \( 10976 \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -24 i - 56\) , \( -104 i - 112\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-24i-56\right){x}-104i-112$
86528.1-b4 86528.1-b \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.451713319$ $1.087423571$ 6.314509131 \( 10976 \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 24 i + 56\) , \( 112 i - 104\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(24i+56\right){x}+112i-104$
86528.3-a4 86528.3-a \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.087423571$ 1.087423571 \( 10976 \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 24 i - 56\) , \( 104 i - 112\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(24i-56\right){x}+104i-112$
86528.3-b4 86528.3-b \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.451713319$ $1.087423571$ 6.314509131 \( 10976 \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -24 i + 56\) , \( -112 i - 104\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-24i+56\right){x}-112i-104$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.