Learn more

Refine search


Results (6 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
2704.2-b1 2704.2-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.044031078$ $3.096799887$ 1.636265263 \( \frac{10173824}{2197} a - \frac{428574}{2197} \) \( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( -6 i - 2\) , \( 4 i - 4\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(-6i-2\right){x}+4i-4$
17576.2-a1 17576.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 13^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.203889286$ $0.858897752$ 2.801920801 \( \frac{10173824}{2197} a - \frac{428574}{2197} \) \( \bigl[i + 1\) , \( -i - 1\) , \( 0\) , \( -i - 79\) , \( 70 i + 303\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-i-79\right){x}+70i+303$
17576.3-b1 17576.3-b \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 13^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.526688343$ $0.858897752$ 3.618971473 \( \frac{10173824}{2197} a - \frac{428574}{2197} \) \( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( -56 i + 57\) , \( 165 i + 207\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-56i+57\right){x}+165i+207$
33800.2-g1 33800.2-g \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.384931012$ 2.769862024 \( \frac{10173824}{2197} a - \frac{428574}{2197} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( 25 i - 16\) , \( 68 i - 10\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(25i-16\right){x}+68i-10$
33800.8-e1 33800.8-e \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.248221662$ $1.384931012$ 4.125238536 \( \frac{10173824}{2197} a - \frac{428574}{2197} \) \( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( 6 i + 29\) , \( -45 i + 23\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(6i+29\right){x}-45i+23$
43264.2-g1 43264.2-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.548399943$ 3.096799887 \( \frac{10173824}{2197} a - \frac{428574}{2197} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -22 i - 9\) , \( 55 i - 23\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-22i-9\right){x}+55i-23$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.