Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
196.2-a3 196.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \) 0 $\Z/3\Z\oplus\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $2.626251405$ 0.505422318 \( \frac{9938375}{21952} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 4 a - 5\) , \( -6\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(4a-5\right){x}-6$
9604.3-c3 9604.3-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.375178772$ 2.599314781 \( \frac{9938375}{21952} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( 220\) , \( 2192\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}+220{x}+2192$
12348.2-a3 12348.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.439526447$ $0.573095040$ 2.326864094 \( \frac{9938375}{21952} \) \( \bigl[1\) , \( a\) , \( 1\) , \( 108 a - 68\) , \( -345 a + 638\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(108a-68\right){x}-345a+638$
12348.3-a3 12348.3-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.439526447$ $0.573095040$ 2.326864094 \( \frac{9938375}{21952} \) \( \bigl[a\) , \( a\) , \( 1\) , \( 67 a - 108\) , \( 345 a + 293\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(67a-108\right){x}+345a+293$
12544.2-k3 12544.2-k \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.104668525$ $0.656562851$ 3.191239339 \( \frac{9938375}{21952} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 72\) , \( 368\bigr] \) ${y}^2={x}^{3}-{x}^{2}+72{x}+368$
33124.4-c3 33124.4-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.728391085$ 2.523220734 \( \frac{9938375}{21952} \) \( \bigl[a\) , \( 1\) , \( 1\) , \( 31 a + 36\) , \( -207 a - 98\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+{x}^{2}+\left(31a+36\right){x}-207a-98$
33124.6-c3 33124.6-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.728391085$ 2.523220734 \( \frac{9938375}{21952} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( -36 a - 32\) , \( 207 a - 305\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-36a-32\right){x}+207a-305$
87808.2-a3 87808.2-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 7^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.239386215$ $0.248157432$ 2.566762269 \( \frac{9938375}{21952} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 215 a - 573\) , \( -6983 a - 583\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(215a-573\right){x}-6983a-583$
87808.2-r3 87808.2-r \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 7^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.248157432$ 3.438570245 \( \frac{9938375}{21952} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 358 a + 215\) , \( 6983 a + 583\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(358a+215\right){x}+6983a+583$
87808.3-c3 87808.3-c \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 7^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.239386215$ $0.248157432$ 2.566762269 \( \frac{9938375}{21952} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -215 a - 358\) , \( 6983 a - 7566\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-215a-358\right){x}+6983a-7566$
87808.3-t3 87808.3-t \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 7^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.248157432$ 3.438570245 \( \frac{9938375}{21952} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 573 a - 215\) , \( -6983 a + 7566\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(573a-215\right){x}-6983a+7566$
112896.2-r3 112896.2-r \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.379066738$ 2.626251405 \( \frac{9938375}{21952} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a - 215\) , \( -2423 a + 1104\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(a-215\right){x}-2423a+1104$
112896.2-ba3 112896.2-ba \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.379066738$ 2.626251405 \( \frac{9938375}{21952} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 216 a\) , \( 2208 a - 1104\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+216a{x}+2208a-1104$
122500.2-e3 122500.2-e \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 5^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.525250281$ 3.639040694 \( \frac{9938375}{21952} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 113 a - 113\) , \( -831\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(113a-113\right){x}-831$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.