| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 28224.2-h2 |
28224.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
28224.2 |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( 2^{22} \cdot 3^{10} \cdot 7^{13} \) |
$2.00611$ |
$(-2a+1), (-3a+1), (3a-2), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$0.161471043$ |
2.237408416 |
\( \frac{2501041836936508}{124571584809} a - \frac{3039469496037370}{124571584809} \) |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( -2663 a + 3493\) , \( 28801 a + 52668\bigr] \) |
${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2663a+3493\right){x}+28801a+52668$ |
| 37632.2-d2 |
37632.2-d |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
37632.2 |
\( 2^{8} \cdot 3 \cdot 7^{2} \) |
\( 2^{22} \cdot 3^{4} \cdot 7^{13} \) |
$2.15570$ |
$(-2a+1), (-3a+1), (3a-2), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.279676052$ |
1.291768351 |
\( \frac{2501041836936508}{124571584809} a - \frac{3039469496037370}{124571584809} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 888 a - 1164\) , \( 14220 a - 11772\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(888a-1164\right){x}+14220a-11772$ |
| 37632.2-i2 |
37632.2-i |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
37632.2 |
\( 2^{8} \cdot 3 \cdot 7^{2} \) |
\( 2^{22} \cdot 3^{4} \cdot 7^{13} \) |
$2.15570$ |
$(-2a+1), (-3a+1), (3a-2), (2)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \cdot 3 \) |
$0.256090708$ |
$0.279676052$ |
3.969718467 |
\( \frac{2501041836936508}{124571584809} a - \frac{3039469496037370}{124571584809} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -1164 a + 276\) , \( -14220 a + 11772\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(-1164a+276\right){x}-14220a+11772$ |
| 65856.2-e2 |
65856.2-e |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
65856.2 |
\( 2^{6} \cdot 3 \cdot 7^{3} \) |
\( 2^{22} \cdot 3^{4} \cdot 7^{19} \) |
$2.47941$ |
$(-2a+1), (-3a+1), (3a-2), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$0.105707611$ |
1.952970177 |
\( \frac{2501041836936508}{124571584809} a - \frac{3039469496037370}{124571584809} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -7933 a + 6651\) , \( -59567 a + 275665\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-7933a+6651\right){x}-59567a+275665$ |
| 65856.3-c2 |
65856.3-c |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
65856.3 |
\( 2^{6} \cdot 3 \cdot 7^{3} \) |
\( 2^{22} \cdot 3^{4} \cdot 7^{19} \) |
$2.47941$ |
$(-2a+1), (-3a+1), (3a-2), (2)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$6.947467229$ |
$0.105707611$ |
3.392049076 |
\( \frac{2501041836936508}{124571584809} a - \frac{3039469496037370}{124571584809} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -3611 a + 8486\) , \( 234601 a + 27418\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-3611a+8486\right){x}+234601a+27418$ |
| 112896.2-i2 |
112896.2-i |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
112896.2 |
\( 2^{8} \cdot 3^{2} \cdot 7^{2} \) |
\( 2^{22} \cdot 3^{10} \cdot 7^{13} \) |
$2.83706$ |
$(-2a+1), (-3a+1), (3a-2), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.161471043$ |
1.491605611 |
\( \frac{2501041836936508}{124571584809} a - \frac{3039469496037370}{124571584809} \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -2663 a + 3493\) , \( -28801 a - 52668\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2663a+3493\right){x}-28801a-52668$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.