Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1344.2-b2 1344.2-b \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 7 \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $2.127202530$ 1.228140953 \( \frac{2145056}{567} a - \frac{583312}{189} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 11 a + 2\) , \( -3 a - 15\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(11a+2\right){x}-3a-15$
5376.2-b2 5376.2-b \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.127202530$ 1.228140953 \( \frac{2145056}{567} a - \frac{583312}{189} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 11 a + 2\) , \( 3 a + 15\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(11a+2\right){x}+3a+15$
16128.2-e3 16128.2-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.228140953$ 1.418135020 \( \frac{2145056}{567} a - \frac{583312}{189} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -31 a - 7\) , \( -131 a + 56\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-31a-7\right){x}-131a+56$
16128.2-g3 16128.2-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.492629364$ $1.228140953$ 2.794459814 \( \frac{2145056}{567} a - \frac{583312}{189} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -31 a - 7\) , \( 131 a - 56\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-31a-7\right){x}+131a-56$
28224.3-d3 28224.3-d \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.464193648$ 2.144018622 \( \frac{2145056}{567} a - \frac{583312}{189} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 278 a - 61\) , \( 803 a + 1141\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(278a-61\right){x}+803a+1141$
37632.3-d3 37632.3-d \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.804006983$ 0.928387296 \( \frac{2145056}{567} a - \frac{583312}{189} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 72 a - 92\) , \( -360 a + 360\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(72a-92\right){x}-360a+360$
37632.3-j3 37632.3-j \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.529737493$ $0.804006983$ 3.934412475 \( \frac{2145056}{567} a - \frac{583312}{189} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -92 a + 20\) , \( 360 a - 360\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-92a+20\right){x}+360a-360$
86016.2-i3 86016.2-i \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3 \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.299735277$ $1.063601265$ 3.192516246 \( \frac{2145056}{567} a - \frac{583312}{189} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 43 a + 9\) , \( 28 a - 163\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(43a+9\right){x}+28a-163$
86016.2-bf3 86016.2-bf \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3 \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.259785602$ $1.063601265$ 5.104853393 \( \frac{2145056}{567} a - \frac{583312}{189} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 43 a + 9\) , \( -28 a + 163\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(43a+9\right){x}-28a+163$
112896.3-q3 112896.3-q \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.099000185$ $0.464193648$ 4.712553729 \( \frac{2145056}{567} a - \frac{583312}{189} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -215 a + 277\) , \( -1019 a - 864\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-215a+277\right){x}-1019a-864$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.