Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1344.2-b1 1344.2-b \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.127202530$ 1.228140953 \( \frac{14733184}{7203} a - \frac{30152432}{2401} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -14 a - 3\) , \( 35 a - 14\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-14a-3\right){x}+35a-14$
5376.2-b1 5376.2-b \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.127202530$ 1.228140953 \( \frac{14733184}{7203} a - \frac{30152432}{2401} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -14 a - 3\) , \( -35 a + 14\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-14a-3\right){x}-35a+14$
16128.2-e2 16128.2-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.228140953$ 1.418135020 \( \frac{14733184}{7203} a - \frac{30152432}{2401} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 44 a + 8\) , \( 64 a - 160\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(44a+8\right){x}+64a-160$
16128.2-g2 16128.2-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.492629364$ $1.228140953$ 2.794459814 \( \frac{14733184}{7203} a - \frac{30152432}{2401} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 44 a + 8\) , \( -64 a + 160\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(44a+8\right){x}-64a+160$
28224.3-d2 28224.3-d \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.464193648$ 2.144018622 \( \frac{14733184}{7203} a - \frac{30152432}{2401} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -367 a + 89\) , \( -2485 a + 2080\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-367a+89\right){x}-2485a+2080$
37632.3-d2 37632.3-d \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.804006983$ 0.928387296 \( \frac{14733184}{7203} a - \frac{30152432}{2401} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -93 a + 123\) , \( -165 a - 393\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-93a+123\right){x}-165a-393$
37632.3-j2 37632.3-j \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.118949973$ $0.804006983$ 3.934412475 \( \frac{14733184}{7203} a - \frac{30152432}{2401} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 123 a - 30\) , \( 165 a + 393\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(123a-30\right){x}+165a+393$
86016.2-i2 86016.2-i \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3 \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.299735277$ $1.063601265$ 3.192516246 \( \frac{14733184}{7203} a - \frac{30152432}{2401} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -57 a - 11\) , \( 212 a - 55\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-57a-11\right){x}+212a-55$
86016.2-bf2 86016.2-bf \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3 \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.039142408$ $1.063601265$ 5.104853393 \( \frac{14733184}{7203} a - \frac{30152432}{2401} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -57 a - 11\) , \( -212 a + 55\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-57a-11\right){x}-212a+55$
112896.3-q2 112896.3-q \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.099000185$ $0.464193648$ 4.712553729 \( \frac{14733184}{7203} a - \frac{30152432}{2401} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 280 a - 368\) , \( 2764 a - 2448\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(280a-368\right){x}+2764a-2448$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.