Learn more

Refine search


Results (13 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
75.1-a5 75.1-a Q(3)\Q(\sqrt{-3}) 352 3 \cdot 5^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 4.4714034254.471403425 0.322695746 13997521225 \frac{13997521}{225} [1 \bigl[1 , 1 1 , 1 1 , 5 -5 , 2] 2\bigr] y2+xy+y=x3+x25x+2{y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-5{x}+2
1875.1-b5 1875.1-b Q(3)\Q(\sqrt{-3}) 354 3 \cdot 5^{4} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8942806850.894280685 1.032626388 13997521225 \frac{13997521}{225} [1 \bigl[1 , 0 0 , 1 1 , 126 -126 , 523] 523\bigr] y2+xy+y=x3126x+523{y}^2+{x}{y}+{y}={x}^{3}-126{x}+523
11025.1-c5 11025.1-c Q(3)\Q(\sqrt{-3}) 325272 3^{2} \cdot 5^{2} \cdot 7^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.9757402210.975740221 2.253375518 13997521225 \frac{13997521}{225} [a+1 \bigl[a + 1 , a1 -a - 1 , 1 1 , 75a+45 75 a + 45 , 221a483] 221 a - 483\bigr] y2+(a+1)xy+y=x3+(a1)x2+(75a+45)x+221a483{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(75a+45\right){x}+221a-483
11025.3-c5 11025.3-c Q(3)\Q(\sqrt{-3}) 325272 3^{2} \cdot 5^{2} \cdot 7^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.9757402210.975740221 2.253375518 13997521225 \frac{13997521}{225} [a+1 \bigl[a + 1 , a+1 a + 1 , 0 0 , 43a76 -43 a - 76 , 341a217] -341 a - 217\bigr] y2+(a+1)xy=x3+(a+1)x2+(43a76)x341a217{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-43a-76\right){x}-341a-217
12675.1-a5 12675.1-a Q(3)\Q(\sqrt{-3}) 352132 3 \cdot 5^{2} \cdot 13^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.2401441781.240144178 2.863990301 13997521225 \frac{13997521}{225} [1 \bigl[1 , a+1 a + 1 , 1 1 , 39a+75 -39 a + 75 , 149a+117] 149 a + 117\bigr] y2+xy+y=x3+(a+1)x2+(39a+75)x+149a+117{y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-39a+75\right){x}+149a+117
12675.3-a5 12675.3-a Q(3)\Q(\sqrt{-3}) 352132 3 \cdot 5^{2} \cdot 13^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.2401441781.240144178 2.863990301 13997521225 \frac{13997521}{225} [a \bigl[a , a1 -a - 1 , a a , 75a+41 -75 a + 41 , 114a+191] -114 a + 191\bigr] y2+axy+ay=x3+(a1)x2+(75a+41)x114a+191{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-75a+41\right){x}-114a+191
19200.1-g5 19200.1-g Q(3)\Q(\sqrt{-3}) 28352 2^{8} \cdot 3 \cdot 5^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.6501564210.650156421 1.1178508561.117850856 3.356843389 13997521225 \frac{13997521}{225} [0 \bigl[0 , 1 1 , 0 0 , 80 -80 , 300] -300\bigr] y2=x3+x280x300{y}^2={x}^{3}+{x}^{2}-80{x}-300
57600.1-j5 57600.1-j Q(3)\Q(\sqrt{-3}) 283252 2^{8} \cdot 3^{2} \cdot 5^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 1.3323303701.332330370 0.6453914920.645391492 3.971591054 13997521225 \frac{13997521}{225} [0 \bigl[0 , a1 -a - 1 , 0 0 , 240a -240 a , 1800a900] 1800 a - 900\bigr] y2=x3+(a1)x2240ax+1800a900{y}^2={x}^{3}+\left(-a-1\right){x}^{2}-240a{x}+1800a-900
57600.1-k5 57600.1-k Q(3)\Q(\sqrt{-3}) 283252 2^{8} \cdot 3^{2} \cdot 5^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 1.3323303701.332330370 0.6453914920.645391492 3.971591054 13997521225 \frac{13997521}{225} [0 \bigl[0 , a+1 a + 1 , 0 0 , 242a241 242 a - 241 , 1559a+659] -1559 a + 659\bigr] y2=x3+(a+1)x2+(242a241)x1559a+659{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(242a-241\right){x}-1559a+659
81225.1-a5 81225.1-a Q(3)\Q(\sqrt{-3}) 3252192 3^{2} \cdot 5^{2} \cdot 19^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 1.0069268641.006926864 0.5922518510.592251851 2.754442525 13997521225 \frac{13997521}{225} [a \bigl[a , a a , a+1 a + 1 , 76a241 -76 a - 241 , 591a+1422] 591 a + 1422\bigr] y2+axy+(a+1)y=x3+ax2+(76a241)x+591a+1422{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-76a-241\right){x}+591a+1422
81225.3-a5 81225.3-a Q(3)\Q(\sqrt{-3}) 3252192 3^{2} \cdot 5^{2} \cdot 19^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 1.0069268641.006926864 0.5922518510.592251851 2.754442525 13997521225 \frac{13997521}{225} [1 \bigl[1 , a a , a a , 241a+75 241 a + 75 , 592a+2014] -592 a + 2014\bigr] y2+xy+ay=x3+ax2+(241a+75)x592a+2014{y}^2+{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(241a+75\right){x}-592a+2014
102675.1-a5 102675.1-a Q(3)\Q(\sqrt{-3}) 352372 3 \cdot 5^{2} \cdot 37^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 3.0181586763.018158676 0.7350941940.735094194 5.123708641 13997521225 \frac{13997521}{225} [a+1 \bigl[a + 1 , a+1 -a + 1 , 0 0 , 35a+166 35 a + 166 , 1081a+831] -1081 a + 831\bigr] y2+(a+1)xy=x3+(a+1)x2+(35a+166)x1081a+831{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(35a+166\right){x}-1081a+831
102675.3-a5 102675.3-a Q(3)\Q(\sqrt{-3}) 352372 3 \cdot 5^{2} \cdot 37^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 3.0181586763.018158676 0.7350941940.735094194 5.123708641 13997521225 \frac{13997521}{225} [1 \bigl[1 , a -a , 0 0 , 201a166 201 a - 166 , 1081a250] 1081 a - 250\bigr] y2+xy=x3ax2+(201a166)x+1081a250{y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(201a-166\right){x}+1081a-250
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.