Learn more

Refine search


Results (5 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
676.2-b1 676.2-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 13^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $0.896934130$ 1.035690323 \( -\frac{10730978619193}{6656} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -460\) , \( -3830\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-460{x}-3830$
8788.2-a1 8788.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 13^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.784756442$ $0.248764769$ 1.803362851 \( -\frac{10730978619193}{6656} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 6892 a - 3217\) , \( -137871 a - 65106\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(6892a-3217\right){x}-137871a-65106$
8788.3-a1 8788.3-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 13^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.784756442$ $0.248764769$ 1.803362851 \( -\frac{10730978619193}{6656} \) \( \bigl[a\) , \( -a\) , \( 1\) , \( -6893 a + 3676\) , \( 137871 a - 202977\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-6893a+3676\right){x}+137871a-202977$
43264.2-f1 43264.2-f \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.166288191$ $0.224233532$ 3.100015278 \( -\frac{10730978619193}{6656} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -7352\) , \( 245104\bigr] \) ${y}^2={x}^{3}-{x}^{2}-7352{x}+245104$
114244.3-j1 114244.3-j \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 13^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.068994933$ 2.868065512 \( -\frac{10730978619193}{6656} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -77659 a + 77659\) , \( -8336303\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-77659a+77659\right){x}-8336303$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.