Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
6.1-a4 6.1-a \(\Q(\sqrt{-23}) \) \( 2 \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $9.972901485$ 1.039746854 \( \frac{9841}{48} a + \frac{43625}{48} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( a - 2\) , \( -1\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+\left(a+1\right){x}^2+\left(a-2\right){x}-1$
144.1-a4 144.1-a \(\Q(\sqrt{-23}) \) \( 2^{4} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.307123774$ $2.878928678$ 1.474926613 \( \frac{9841}{48} a + \frac{43625}{48} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -7 a + 15\) , \( -8 a - 28\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3-a{x}^2+\left(-7a+15\right){x}-8a-28$
162.3-a4 162.3-a \(\Q(\sqrt{-23}) \) \( 2 \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.107018254$ $3.324300495$ 1.186900192 \( \frac{9841}{48} a + \frac{43625}{48} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -2 a\) , \( 4\bigr] \) ${y}^2+{x}{y}+a{y}={x}^3-{x}^2-2a{x}+4$
192.1-a4 192.1-a \(\Q(\sqrt{-23}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.441143926$ $3.525953134$ 1.297337325 \( \frac{9841}{48} a + \frac{43625}{48} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 2\) , \( -a + 1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3-{x}^2+2{x}-a+1$
288.13-c4 288.13-c \(\Q(\sqrt{-23}) \) \( 2^{5} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.878928678$ 2.401192506 \( \frac{9841}{48} a + \frac{43625}{48} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -2 a - 2\) , \( -a + 7\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3-{x}^2+\left(-2a-2\right){x}-a+7$
384.13-c4 384.13-c \(\Q(\sqrt{-23}) \) \( 2^{7} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.525953134$ 1.470424103 \( \frac{9841}{48} a + \frac{43625}{48} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -a + 6\) , \( -a - 2\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3-a{x}^2+\left(-a+6\right){x}-a-2$
432.3-b4 432.3-b \(\Q(\sqrt{-23}) \) \( 2^{4} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.878928678$ 2.401192506 \( \frac{9841}{48} a + \frac{43625}{48} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( -a + 5\) , \( 5\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+\left(a+1\right){x}^2+\left(-a+5\right){x}+5$
576.1-c4 576.1-c \(\Q(\sqrt{-23}) \) \( 2^{6} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.128075471$ $2.035709991$ 3.830717567 \( \frac{9841}{48} a + \frac{43625}{48} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 13 a + 18\) , \( -26 a - 44\bigr] \) ${y}^2={x}^3+\left(13a+18\right){x}-26a-44$
768.9-b4 768.9-b \(\Q(\sqrt{-23}) \) \( 2^{8} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.493225371$ 2.079493709 \( \frac{9841}{48} a + \frac{43625}{48} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -3 a - 2\) , \( 0\bigr] \) ${y}^2={x}^3+\left(-a+1\right){x}^2+\left(-3a-2\right){x}$
864.19-a4 864.19-a \(\Q(\sqrt{-23}) \) \( 2^{5} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.477253099$ $2.878928678$ 2.291953130 \( \frac{9841}{48} a + \frac{43625}{48} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( -4 a - 20\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^3+\left(a+1\right){x}^2+\left(-4a-20\right){x}$
1014.1-b4 1014.1-b \(\Q(\sqrt{-23}) \) \( 2 \cdot 3 \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.765985205$ 1.153495568 \( \frac{9841}{48} a + \frac{43625}{48} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 7 a + 7\) , \( 8 a + 8\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3-a{x}^2+\left(7a+7\right){x}+8a+8$
1014.3-a4 1014.3-a \(\Q(\sqrt{-23}) \) \( 2 \cdot 3 \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.906963380$ $2.765985205$ 4.184712962 \( \frac{9841}{48} a + \frac{43625}{48} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( 9 a - 5\) , \( -13 a - 12\bigr] \) ${y}^2+a{x}{y}={x}^3+\left(a+1\right){x}^2+\left(9a-5\right){x}-13a-12$
1152.19-b4 1152.19-b \(\Q(\sqrt{-23}) \) \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.371930884$ $2.035709991$ 2.526005057 \( \frac{9841}{48} a + \frac{43625}{48} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -17 a + 18\) , \( 33 a + 70\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^3-{x}^2+\left(-17a+18\right){x}+33a+70$
1728.3-d4 1728.3-d \(\Q(\sqrt{-23}) \) \( 2^{6} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.035709991$ 1.697899503 \( \frac{9841}{48} a + \frac{43625}{48} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( -12 a - 24\) , \( -39 a + 102\bigr] \) ${y}^2+a{x}{y}={x}^3+\left(a+1\right){x}^2+\left(-12a-24\right){x}-39a+102$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.