| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 6.4-a4 |
6.4-a |
$8$ |
$28$ |
\(\Q(\sqrt{-23}) \) |
$2$ |
$[0, 1]$ |
6.4 |
\( 2 \cdot 3 \) |
\( 2^{28} \cdot 3^{7} \) |
$0.67072$ |
$(2,a+1), (3,a+2)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 7$ |
2B, 7B.2.3 |
$1$ |
\( 2^{2} \cdot 7 \) |
$1$ |
$1.424700212$ |
1.039746854 |
\( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) |
\( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -4 a - 17\) , \( -9 a\bigr] \) |
${y}^2+{x}{y}={x}^3+\left(-a-1\right){x}^2+\left(-4a-17\right){x}-9a$ |
| 144.15-a4 |
144.15-a |
$8$ |
$28$ |
\(\Q(\sqrt{-23}) \) |
$2$ |
$[0, 1]$ |
144.15 |
\( 2^{4} \cdot 3^{2} \) |
\( 2^{52} \cdot 3^{13} \) |
$1.48454$ |
$(2,a+1), (3,a+2)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 7$ |
2B, 7B |
$1$ |
\( 2^{3} \) |
$2.149866424$ |
$0.411275525$ |
1.474926613 |
\( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 50 a - 1027\) , \( -2635 a - 10438\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3-{x}^2+\left(50a-1027\right){x}-2635a-10438$ |
| 162.8-a4 |
162.8-a |
$8$ |
$28$ |
\(\Q(\sqrt{-23}) \) |
$2$ |
$[0, 1]$ |
162.8 |
\( 2 \cdot 3^{4} \) |
\( 2^{28} \cdot 3^{19} \) |
$1.52891$ |
$(2,a+1), (3,a), (3,a+2)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 7$ |
2B, 7B |
$1$ |
\( 2^{4} \) |
$0.749127778$ |
$0.474900070$ |
1.186900192 |
\( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( -44 a - 137\) , \( 467 a - 104\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^3-{x}^2+\left(-44a-137\right){x}+467a-104$ |
| 192.14-a4 |
192.14-a |
$8$ |
$28$ |
\(\Q(\sqrt{-23}) \) |
$2$ |
$[0, 1]$ |
192.14 |
\( 2^{6} \cdot 3 \) |
\( 2^{46} \cdot 3^{7} \) |
$1.59525$ |
$(2,a+1), (3,a+2)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 7$ |
2B, 7B |
$1$ |
\( 2^{2} \) |
$3.088007485$ |
$0.503707590$ |
1.297337325 |
\( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -37 a + 167\) , \( -362 a - 122\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(-a-1\right){x}^2+\left(-37a+167\right){x}-362a-122$ |
| 288.6-c4 |
288.6-c |
$8$ |
$28$ |
\(\Q(\sqrt{-23}) \) |
$2$ |
$[0, 1]$ |
288.6 |
\( 2^{5} \cdot 3^{2} \) |
\( 2^{40} \cdot 3^{13} \) |
$1.76543$ |
$(2,a), (2,a+1), (3,a+2)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 7$ |
2B, 7B |
$1$ |
\( 2^{5} \cdot 7 \) |
$1$ |
$0.411275525$ |
2.401192506 |
\( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) |
\( \bigl[a\) , \( -a\) , \( a\) , \( -90 a + 178\) , \( 446 a + 923\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^3-a{x}^2+\left(-90a+178\right){x}+446a+923$ |
| 384.4-b4 |
384.4-b |
$8$ |
$28$ |
\(\Q(\sqrt{-23}) \) |
$2$ |
$[0, 1]$ |
384.4 |
\( 2^{7} \cdot 3 \) |
\( 2^{46} \cdot 3^{7} \) |
$1.89708$ |
$(2,a), (2,a+1), (3,a+2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 7$ |
2B, 7B |
$1$ |
\( 2^{2} \cdot 7 \) |
$1$ |
$0.503707590$ |
1.470424103 |
\( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( 69 a - 53\) , \( -418 a + 210\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^3+\left(69a-53\right){x}-418a+210$ |
| 432.18-c4 |
432.18-c |
$8$ |
$28$ |
\(\Q(\sqrt{-23}) \) |
$2$ |
$[0, 1]$ |
432.18 |
\( 2^{4} \cdot 3^{3} \) |
\( 2^{40} \cdot 3^{13} \) |
$1.95377$ |
$(2,a+1), (3,a), (3,a+2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 7$ |
2B, 7B |
$1$ |
\( 2^{3} \cdot 7 \) |
$1$ |
$0.411275525$ |
2.401192506 |
\( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 84 a - 195\) , \( 382 a - 1582\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^3+\left(a-1\right){x}^2+\left(84a-195\right){x}+382a-1582$ |
| 576.21-c4 |
576.21-c |
$8$ |
$28$ |
\(\Q(\sqrt{-23}) \) |
$2$ |
$[0, 1]$ |
576.21 |
\( 2^{6} \cdot 3^{2} \) |
\( 2^{58} \cdot 3^{13} \) |
$2.09946$ |
$(2,a+1), (3,a+2)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 7$ |
2B, 7B |
$1$ |
\( 2^{3} \) |
$7.896528301$ |
$0.290815713$ |
3.830717567 |
\( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 707 a + 751\) , \( -8150 a - 28854\bigr] \) |
${y}^2={x}^3+\left(707a+751\right){x}-8150a-28854$ |
| 768.10-b4 |
768.10-b |
$8$ |
$28$ |
\(\Q(\sqrt{-23}) \) |
$2$ |
$[0, 1]$ |
768.10 |
\( 2^{8} \cdot 3 \) |
\( 2^{52} \cdot 3^{7} \) |
$2.25602$ |
$(2,a), (2,a+1), (3,a+2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 7$ |
2B, 7B |
$1$ |
\( 2^{3} \cdot 7 \) |
$1$ |
$0.356175053$ |
2.079493709 |
\( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -77 a - 245\) , \( 976 a - 176\bigr] \) |
${y}^2={x}^3+a{x}^2+\left(-77a-245\right){x}+976a-176$ |
| 864.6-a4 |
864.6-a |
$8$ |
$28$ |
\(\Q(\sqrt{-23}) \) |
$2$ |
$[0, 1]$ |
864.6 |
\( 2^{5} \cdot 3^{3} \) |
\( 2^{52} \cdot 3^{13} \) |
$2.32344$ |
$(2,a), (2,a+1), (3,a), (3,a+2)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 7$ |
2B, 7B |
$1$ |
\( 2^{3} \) |
$3.340771694$ |
$0.411275525$ |
2.291953130 |
\( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) |
\( \bigl[a\) , \( a\) , \( 0\) , \( -406 a - 81\) , \( -3148 a + 13865\bigr] \) |
${y}^2+a{x}{y}={x}^3+a{x}^2+\left(-406a-81\right){x}-3148a+13865$ |
| 1014.10-a4 |
1014.10-a |
$8$ |
$28$ |
\(\Q(\sqrt{-23}) \) |
$2$ |
$[0, 1]$ |
1014.10 |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( 2^{40} \cdot 3^{7} \cdot 13^{6} \) |
$2.41831$ |
$(2,a+1), (3,a+2), (13,a+4)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 7$ |
2B, 7B |
$1$ |
\( 2^{3} \cdot 7^{2} \) |
$0.129566197$ |
$0.395140743$ |
4.184712962 |
\( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 193 a + 890\) , \( 2302 a - 16890\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a-1\right){x}^2+\left(193a+890\right){x}+2302a-16890$ |
| 1014.12-c4 |
1014.12-c |
$8$ |
$28$ |
\(\Q(\sqrt{-23}) \) |
$2$ |
$[0, 1]$ |
1014.12 |
\( 2 \cdot 3 \cdot 13^{2} \) |
\( 2^{40} \cdot 3^{7} \cdot 13^{6} \) |
$2.41831$ |
$(2,a+1), (3,a+2), (13,a+8)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 7$ |
2B, 7B |
$1$ |
\( 2^{2} \cdot 7 \) |
$1$ |
$0.395140743$ |
1.153495568 |
\( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( 301 a + 676\) , \( 737 a + 14253\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^3+\left(301a+676\right){x}+737a+14253$ |
| 1152.6-b4 |
1152.6-b |
$8$ |
$28$ |
\(\Q(\sqrt{-23}) \) |
$2$ |
$[0, 1]$ |
1152.6 |
\( 2^{7} \cdot 3^{2} \) |
\( 2^{58} \cdot 3^{13} \) |
$2.49670$ |
$(2,a), (2,a+1), (3,a+2)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 7$ |
2B, 7B |
$1$ |
\( 2^{4} \) |
$2.603516192$ |
$0.290815713$ |
2.526005057 |
\( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) |
\( \bigl[a\) , \( -a\) , \( 0\) , \( -73 a - 1979\) , \( 11411 a + 23519\bigr] \) |
${y}^2+a{x}{y}={x}^3-a{x}^2+\left(-73a-1979\right){x}+11411a+23519$ |
| 1728.26-d4 |
1728.26-d |
$8$ |
$28$ |
\(\Q(\sqrt{-23}) \) |
$2$ |
$[0, 1]$ |
1728.26 |
\( 2^{6} \cdot 3^{3} \) |
\( 2^{58} \cdot 3^{13} \) |
$2.76305$ |
$(2,a+1), (3,a), (3,a+2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 7$ |
2B, 7B |
$1$ |
\( 2^{3} \cdot 7 \) |
$1$ |
$0.290815713$ |
1.697899503 |
\( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -746 a - 590\) , \( 12388 a - 26756\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a-1\right){x}^2+\left(-746a-590\right){x}+12388a-26756$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.