Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
6.4-a4 6.4-a \(\Q(\sqrt{-23}) \) \( 2 \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.424700212$ 1.039746854 \( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -4 a - 17\) , \( -9 a\bigr] \) ${y}^2+{x}{y}={x}^3+\left(-a-1\right){x}^2+\left(-4a-17\right){x}-9a$
144.15-a4 144.15-a \(\Q(\sqrt{-23}) \) \( 2^{4} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.149866424$ $0.411275525$ 1.474926613 \( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 50 a - 1027\) , \( -2635 a - 10438\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3-{x}^2+\left(50a-1027\right){x}-2635a-10438$
162.8-a4 162.8-a \(\Q(\sqrt{-23}) \) \( 2 \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.749127778$ $0.474900070$ 1.186900192 \( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -44 a - 137\) , \( 467 a - 104\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^3-{x}^2+\left(-44a-137\right){x}+467a-104$
192.14-a4 192.14-a \(\Q(\sqrt{-23}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.088007485$ $0.503707590$ 1.297337325 \( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -37 a + 167\) , \( -362 a - 122\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(-a-1\right){x}^2+\left(-37a+167\right){x}-362a-122$
288.6-c4 288.6-c \(\Q(\sqrt{-23}) \) \( 2^{5} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.411275525$ 2.401192506 \( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -90 a + 178\) , \( 446 a + 923\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3-a{x}^2+\left(-90a+178\right){x}+446a+923$
384.4-b4 384.4-b \(\Q(\sqrt{-23}) \) \( 2^{7} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.503707590$ 1.470424103 \( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 69 a - 53\) , \( -418 a + 210\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+\left(69a-53\right){x}-418a+210$
432.18-c4 432.18-c \(\Q(\sqrt{-23}) \) \( 2^{4} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.411275525$ 2.401192506 \( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 84 a - 195\) , \( 382 a - 1582\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^3+\left(a-1\right){x}^2+\left(84a-195\right){x}+382a-1582$
576.21-c4 576.21-c \(\Q(\sqrt{-23}) \) \( 2^{6} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $7.896528301$ $0.290815713$ 3.830717567 \( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 707 a + 751\) , \( -8150 a - 28854\bigr] \) ${y}^2={x}^3+\left(707a+751\right){x}-8150a-28854$
768.10-b4 768.10-b \(\Q(\sqrt{-23}) \) \( 2^{8} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.356175053$ 2.079493709 \( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -77 a - 245\) , \( 976 a - 176\bigr] \) ${y}^2={x}^3+a{x}^2+\left(-77a-245\right){x}+976a-176$
864.6-a4 864.6-a \(\Q(\sqrt{-23}) \) \( 2^{5} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.340771694$ $0.411275525$ 2.291953130 \( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) \( \bigl[a\) , \( a\) , \( 0\) , \( -406 a - 81\) , \( -3148 a + 13865\bigr] \) ${y}^2+a{x}{y}={x}^3+a{x}^2+\left(-406a-81\right){x}-3148a+13865$
1014.10-a4 1014.10-a \(\Q(\sqrt{-23}) \) \( 2 \cdot 3 \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.129566197$ $0.395140743$ 4.184712962 \( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 193 a + 890\) , \( 2302 a - 16890\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a-1\right){x}^2+\left(193a+890\right){x}+2302a-16890$
1014.12-c4 1014.12-c \(\Q(\sqrt{-23}) \) \( 2 \cdot 3 \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.395140743$ 1.153495568 \( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 301 a + 676\) , \( 737 a + 14253\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+\left(301a+676\right){x}+737a+14253$
1152.6-b4 1152.6-b \(\Q(\sqrt{-23}) \) \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.603516192$ $0.290815713$ 2.526005057 \( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) \( \bigl[a\) , \( -a\) , \( 0\) , \( -73 a - 1979\) , \( 11411 a + 23519\bigr] \) ${y}^2+a{x}{y}={x}^3-a{x}^2+\left(-73a-1979\right){x}+11411a+23519$
1728.26-d4 1728.26-d \(\Q(\sqrt{-23}) \) \( 2^{6} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.290815713$ 1.697899503 \( \frac{291660246420647}{587068342272} a + \frac{38130083166223}{97844723712} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -746 a - 590\) , \( 12388 a - 26756\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a-1\right){x}^2+\left(-746a-590\right){x}+12388a-26756$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.