Learn more

Refine search


Results (7 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
275.2-a4 275.2-a \(\Q(\sqrt{-11}) \) \( 5^{2} \cdot 11 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.352424167$ $1.770622110$ 1.505168807 \( \frac{22930509321}{6875} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -59\) , \( 190\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-59{x}+190$
1375.2-a4 1375.2-a \(\Q(\sqrt{-11}) \) \( 5^{3} \cdot 11 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.791846280$ 1.910005093 \( \frac{22930509321}{6875} \) \( \bigl[a\) , \( -a\) , \( 0\) , \( -177 a + 118\) , \( 760 a - 2090\bigr] \) ${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(-177a+118\right){x}+760a-2090$
1375.3-a4 1375.3-a \(\Q(\sqrt{-11}) \) \( 5^{3} \cdot 11 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.791846280$ 1.910005093 \( \frac{22930509321}{6875} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 177 a - 59\) , \( -760 a - 1330\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(177a-59\right){x}-760a-1330$
6875.3-a4 6875.3-a \(\Q(\sqrt{-11}) \) \( 5^{4} \cdot 11 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.596122623$ $0.354124422$ 2.036784674 \( \frac{22930509321}{6875} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -1480\) , \( 22272\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-1480{x}+22272$
22275.8-a4 22275.8-a \(\Q(\sqrt{-11}) \) \( 3^{4} \cdot 5^{2} \cdot 11 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.496724502$ $0.590207370$ 5.657230102 \( \frac{22930509321}{6875} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -533\) , \( -4598\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-533{x}-4598$
27225.2-b4 27225.2-b \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.308225746$ 1.486936948 \( \frac{22930509321}{6875} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 649 a - 1952\) , \( -16071 a + 29400\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(649a-1952\right){x}-16071a+29400$
27225.8-b4 27225.8-b \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.308225746$ 1.486936948 \( \frac{22930509321}{6875} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -651 a - 1301\) , \( 16070 a + 13330\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-651a-1301\right){x}+16070a+13330$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.