Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
14400.7-k1 14400.7-k \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.637697734$ 3.076369620 \( \frac{10718164}{19683} a - \frac{2692192}{6561} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -56 a + 29\) , \( -88 a + 542\bigr] \) ${y}^2={x}^{3}+\left(-56a+29\right){x}-88a+542$
14400.7-l1 14400.7-l \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.285187096$ 6.191074436 \( \frac{10718164}{19683} a - \frac{2692192}{6561} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 31 a + 446\) , \( 2784 a - 4906\bigr] \) ${y}^2={x}^{3}+\left(31a+446\right){x}+2784a-4906$
19200.4-c1 19200.4-c \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.493958540$ 1.191472830 \( \frac{10718164}{19683} a - \frac{2692192}{6561} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 43 a - 160\) , \( 191 a - 1121\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(43a-160\right){x}+191a-1121$
19200.4-d1 19200.4-d \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3 \cdot 5^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.019114707$ $1.104524875$ 5.499972963 \( \frac{10718164}{19683} a - \frac{2692192}{6561} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 16 a + 8\) , \( 32 a + 64\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(16a+8\right){x}+32a+64$
19200.4-bf1 19200.4-bf \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.104524875$ 3.996321364 \( \frac{10718164}{19683} a - \frac{2692192}{6561} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 16 a + 8\) , \( -32 a - 64\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(16a+8\right){x}-32a-64$
19200.4-bg1 19200.4-bg \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.493958540$ 5.361627738 \( \frac{10718164}{19683} a - \frac{2692192}{6561} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 43 a - 160\) , \( -191 a + 1121\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(43a-160\right){x}-191a+1121$
43200.4-d1 43200.4-d \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{3} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.285187096$ 0.343948579 \( \frac{10718164}{19683} a - \frac{2692192}{6561} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -244 a + 348\) , \( 1532 a + 4160\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-244a+348\right){x}+1532a+4160$
43200.4-w1 43200.4-w \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{3} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.211675847$ $0.637697734$ 8.791107477 \( \frac{10718164}{19683} a - \frac{2692192}{6561} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -22 a - 75\) , \( -311 a - 74\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-22a-75\right){x}-311a-74$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.