Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 2059 over totally real cubic fields with discriminant 1957

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
125.6-a1 125.6-a 3.3.169.1 \( 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.187542918$ 1.596167051 \( \frac{53152820281148}{625} a^{2} + \frac{88975367883001}{625} a + \frac{21722839234996}{625} \) \( \bigl[a^{2} - a - 3\) , \( a - 1\) , \( a + 1\) , \( -320 a^{2} - 1030 a - 810\) , \( -13157 a^{2} - 26340 a - 11321\bigr] \) ${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-320a^{2}-1030a-810\right){x}-13157a^{2}-26340a-11321$
125.6-a2 125.6-a 3.3.169.1 \( 5^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $41.50034334$ 1.596167051 \( \frac{217317341}{5} a^{2} - \frac{2574843704}{25} a - \frac{785560232}{25} \) \( \bigl[a^{2} - a - 3\) , \( a - 1\) , \( a + 1\) , \( -20 a^{2} - 65 a - 50\) , \( -221 a^{2} - 440 a - 187\bigr] \) ${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-20a^{2}-65a-50\right){x}-221a^{2}-440a-187$
125.6-a3 125.6-a 3.3.169.1 \( 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $20.75017167$ 1.596167051 \( \frac{5230339383024320708}{625} a^{2} - \frac{2486715541714430821}{125} a - \frac{3797798826756471012}{625} \) \( \bigl[a^{2} - a - 3\) , \( a - 1\) , \( a + 1\) , \( -40 a^{2} - 60 a - 10\) , \( -61 a^{2} - 320 a - 317\bigr] \) ${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-40a^{2}-60a-10\right){x}-61a^{2}-320a-317$
125.6-a4 125.6-a 3.3.169.1 \( 5^{3} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $83.00068669$ 1.596167051 \( -\frac{18759}{5} a^{2} + \frac{39689}{5} a + \frac{24453}{5} \) \( \bigl[a^{2} - a - 3\) , \( a - 1\) , \( a + 1\) , \( -5 a - 5\) , \( -7 a^{2} - 10 a - 1\bigr] \) ${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-5a-5\right){x}-7a^{2}-10a-1$
125.6-b1 125.6-b 3.3.169.1 \( 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.00012459$ 0.846163430 \( -\frac{21225835996837}{9765625} a^{2} + \frac{27017382271681}{9765625} a + \frac{77573965543901}{9765625} \) \( \bigl[a^{2} - 3\) , \( -a^{2} + a + 2\) , \( a^{2} - 2\) , \( 85 a^{2} - 113 a - 320\) , \( 682 a^{2} - 873 a - 2497\bigr] \) ${y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{2}+a+2\right){x}^{2}+\left(85a^{2}-113a-320\right){x}+682a^{2}-873a-2497$
125.6-b2 125.6-b 3.3.169.1 \( 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $22.00024918$ 0.846163430 \( -\frac{2843862}{3125} a^{2} + \frac{4771131}{3125} a + \frac{12367976}{3125} \) \( \bigl[a^{2} - 3\) , \( -a^{2} + a + 2\) , \( a^{2} - 2\) , \( 5 a^{2} - 8 a - 20\) , \( 14 a^{2} - 19 a - 53\bigr] \) ${y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{2}+a+2\right){x}^{2}+\left(5a^{2}-8a-20\right){x}+14a^{2}-19a-53$
125.6-b3 125.6-b 3.3.169.1 \( 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.00012459$ 0.846163430 \( \frac{917921432246848}{25} a^{2} + \frac{1515529783362901}{25} a + \frac{346230473004096}{25} \) \( \bigl[a + 1\) , \( 1\) , \( a^{2} - 2\) , \( 453 a^{2} - 785 a - 1954\) , \( -9087 a^{2} + 8906 a + 29516\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+{x}^{2}+\left(453a^{2}-785a-1954\right){x}-9087a^{2}+8906a+29516$
125.6-b4 125.6-b 3.3.169.1 \( 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $22.00024918$ 0.846163430 \( -\frac{116413326867}{5} a^{2} + \frac{148272075696}{5} a + \frac{425000233856}{5} \) \( \bigl[a + 1\) , \( 1\) , \( a^{2} - 2\) , \( 523 a^{2} - 680 a - 1929\) , \( -8214 a^{2} + 10407 a + 29912\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+{x}^{2}+\left(523a^{2}-680a-1929\right){x}-8214a^{2}+10407a+29912$
125.6-c1 125.6-c 3.3.169.1 \( 5^{3} \) $1$ $\Z/10\Z$ $\mathrm{SU}(2)$ $0.376082831$ $90.63000163$ 1.573125580 \( -\frac{21225835996837}{9765625} a^{2} + \frac{27017382271681}{9765625} a + \frac{77573965543901}{9765625} \) \( \bigl[a^{2} - a - 3\) , \( a^{2} - 2 a - 3\) , \( a^{2} - 3\) , \( 55 a^{2} - 72 a - 203\) , \( -288 a^{2} + 366 a + 1050\bigr] \) ${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(a^{2}-2a-3\right){x}^{2}+\left(55a^{2}-72a-203\right){x}-288a^{2}+366a+1050$
125.6-c2 125.6-c 3.3.169.1 \( 5^{3} \) $1$ $\Z/10\Z$ $\mathrm{SU}(2)$ $0.752165662$ $90.63000163$ 1.573125580 \( -\frac{2843862}{3125} a^{2} + \frac{4771131}{3125} a + \frac{12367976}{3125} \) \( \bigl[a^{2} - a - 3\) , \( a^{2} - 2 a - 3\) , \( a^{2} - 3\) , \( 5 a^{2} - 7 a - 18\) , \( -4 a^{2} + 4 a + 13\bigr] \) ${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(a^{2}-2a-3\right){x}^{2}+\left(5a^{2}-7a-18\right){x}-4a^{2}+4a+13$
125.6-c3 125.6-c 3.3.169.1 \( 5^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.880414155$ $3.625200065$ 1.573125580 \( \frac{917921432246848}{25} a^{2} + \frac{1515529783362901}{25} a + \frac{346230473004096}{25} \) \( \bigl[a^{2} - a - 2\) , \( a^{2} - 4\) , \( 1\) , \( 298 a^{2} - 455 a - 1194\) , \( 3483 a^{2} - 5075 a - 13596\bigr] \) ${y}^2+\left(a^{2}-a-2\right){x}{y}+{y}={x}^{3}+\left(a^{2}-4\right){x}^{2}+\left(298a^{2}-455a-1194\right){x}+3483a^{2}-5075a-13596$
125.6-c4 125.6-c 3.3.169.1 \( 5^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.760828310$ $3.625200065$ 1.573125580 \( -\frac{116413326867}{5} a^{2} + \frac{148272075696}{5} a + \frac{425000233856}{5} \) \( \bigl[a^{2} - a - 2\) , \( a^{2} - 4\) , \( 1\) , \( 323 a^{2} - 415 a - 1184\) , \( 3704 a^{2} - 4733 a - 13544\bigr] \) ${y}^2+\left(a^{2}-a-2\right){x}{y}+{y}={x}^{3}+\left(a^{2}-4\right){x}^{2}+\left(323a^{2}-415a-1184\right){x}+3704a^{2}-4733a-13544$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.