| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 125.6-a1 |
125.6-a |
$4$ |
$4$ |
3.3.169.1 |
$3$ |
$[3, 0]$ |
125.6 |
\( 5^{3} \) |
\( 5^{11} \) |
$2.59757$ |
$(-a^2+2a+3), (-a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$5.187542918$ |
1.596167051 |
\( \frac{53152820281148}{625} a^{2} + \frac{88975367883001}{625} a + \frac{21722839234996}{625} \) |
\( \bigl[a^{2} - a - 3\) , \( a - 1\) , \( a + 1\) , \( -320 a^{2} - 1030 a - 810\) , \( -13157 a^{2} - 26340 a - 11321\bigr] \) |
${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-320a^{2}-1030a-810\right){x}-13157a^{2}-26340a-11321$ |
| 125.6-a2 |
125.6-a |
$4$ |
$4$ |
3.3.169.1 |
$3$ |
$[3, 0]$ |
125.6 |
\( 5^{3} \) |
\( 5^{10} \) |
$2.59757$ |
$(-a^2+2a+3), (-a+1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$41.50034334$ |
1.596167051 |
\( \frac{217317341}{5} a^{2} - \frac{2574843704}{25} a - \frac{785560232}{25} \) |
\( \bigl[a^{2} - a - 3\) , \( a - 1\) , \( a + 1\) , \( -20 a^{2} - 65 a - 50\) , \( -221 a^{2} - 440 a - 187\bigr] \) |
${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-20a^{2}-65a-50\right){x}-221a^{2}-440a-187$ |
| 125.6-a3 |
125.6-a |
$4$ |
$4$ |
3.3.169.1 |
$3$ |
$[3, 0]$ |
125.6 |
\( 5^{3} \) |
\( - 5^{11} \) |
$2.59757$ |
$(-a^2+2a+3), (-a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$20.75017167$ |
1.596167051 |
\( \frac{5230339383024320708}{625} a^{2} - \frac{2486715541714430821}{125} a - \frac{3797798826756471012}{625} \) |
\( \bigl[a^{2} - a - 3\) , \( a - 1\) , \( a + 1\) , \( -40 a^{2} - 60 a - 10\) , \( -61 a^{2} - 320 a - 317\bigr] \) |
${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-40a^{2}-60a-10\right){x}-61a^{2}-320a-317$ |
| 125.6-a4 |
125.6-a |
$4$ |
$4$ |
3.3.169.1 |
$3$ |
$[3, 0]$ |
125.6 |
\( 5^{3} \) |
\( 5^{8} \) |
$2.59757$ |
$(-a^2+2a+3), (-a+1)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$83.00068669$ |
1.596167051 |
\( -\frac{18759}{5} a^{2} + \frac{39689}{5} a + \frac{24453}{5} \) |
\( \bigl[a^{2} - a - 3\) , \( a - 1\) , \( a + 1\) , \( -5 a - 5\) , \( -7 a^{2} - 10 a - 1\bigr] \) |
${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-5a-5\right){x}-7a^{2}-10a-1$ |
| 125.6-b1 |
125.6-b |
$4$ |
$10$ |
3.3.169.1 |
$3$ |
$[3, 0]$ |
125.6 |
\( 5^{3} \) |
\( 5^{19} \) |
$2.59757$ |
$(-a^2+2a+3), (-a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B.4.1 |
$1$ |
\( 2^{2} \) |
$1$ |
$11.00012459$ |
0.846163430 |
\( -\frac{21225835996837}{9765625} a^{2} + \frac{27017382271681}{9765625} a + \frac{77573965543901}{9765625} \) |
\( \bigl[a^{2} - 3\) , \( -a^{2} + a + 2\) , \( a^{2} - 2\) , \( 85 a^{2} - 113 a - 320\) , \( 682 a^{2} - 873 a - 2497\bigr] \) |
${y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{2}+a+2\right){x}^{2}+\left(85a^{2}-113a-320\right){x}+682a^{2}-873a-2497$ |
| 125.6-b2 |
125.6-b |
$4$ |
$10$ |
3.3.169.1 |
$3$ |
$[3, 0]$ |
125.6 |
\( 5^{3} \) |
\( 5^{14} \) |
$2.59757$ |
$(-a^2+2a+3), (-a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B.4.1 |
$1$ |
\( 2 \) |
$1$ |
$22.00024918$ |
0.846163430 |
\( -\frac{2843862}{3125} a^{2} + \frac{4771131}{3125} a + \frac{12367976}{3125} \) |
\( \bigl[a^{2} - 3\) , \( -a^{2} + a + 2\) , \( a^{2} - 2\) , \( 5 a^{2} - 8 a - 20\) , \( 14 a^{2} - 19 a - 53\bigr] \) |
${y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{2}+a+2\right){x}^{2}+\left(5a^{2}-8a-20\right){x}+14a^{2}-19a-53$ |
| 125.6-b3 |
125.6-b |
$4$ |
$10$ |
3.3.169.1 |
$3$ |
$[3, 0]$ |
125.6 |
\( 5^{3} \) |
\( 5^{11} \) |
$2.59757$ |
$(-a^2+2a+3), (-a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B.4.2 |
$1$ |
\( 2^{2} \) |
$1$ |
$11.00012459$ |
0.846163430 |
\( \frac{917921432246848}{25} a^{2} + \frac{1515529783362901}{25} a + \frac{346230473004096}{25} \) |
\( \bigl[a + 1\) , \( 1\) , \( a^{2} - 2\) , \( 453 a^{2} - 785 a - 1954\) , \( -9087 a^{2} + 8906 a + 29516\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+{x}^{2}+\left(453a^{2}-785a-1954\right){x}-9087a^{2}+8906a+29516$ |
| 125.6-b4 |
125.6-b |
$4$ |
$10$ |
3.3.169.1 |
$3$ |
$[3, 0]$ |
125.6 |
\( 5^{3} \) |
\( 5^{10} \) |
$2.59757$ |
$(-a^2+2a+3), (-a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B.4.2 |
$1$ |
\( 2 \) |
$1$ |
$22.00024918$ |
0.846163430 |
\( -\frac{116413326867}{5} a^{2} + \frac{148272075696}{5} a + \frac{425000233856}{5} \) |
\( \bigl[a + 1\) , \( 1\) , \( a^{2} - 2\) , \( 523 a^{2} - 680 a - 1929\) , \( -8214 a^{2} + 10407 a + 29912\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+{x}^{2}+\left(523a^{2}-680a-1929\right){x}-8214a^{2}+10407a+29912$ |
| 125.6-c1 |
125.6-c |
$4$ |
$10$ |
3.3.169.1 |
$3$ |
$[3, 0]$ |
125.6 |
\( 5^{3} \) |
\( 5^{13} \) |
$2.59757$ |
$(-a^2+2a+3), (-a+1)$ |
$1$ |
$\Z/10\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B.1.1 |
$1$ |
\( 2^{2} \cdot 5 \) |
$0.376082831$ |
$90.63000163$ |
1.573125580 |
\( -\frac{21225835996837}{9765625} a^{2} + \frac{27017382271681}{9765625} a + \frac{77573965543901}{9765625} \) |
\( \bigl[a^{2} - a - 3\) , \( a^{2} - 2 a - 3\) , \( a^{2} - 3\) , \( 55 a^{2} - 72 a - 203\) , \( -288 a^{2} + 366 a + 1050\bigr] \) |
${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(a^{2}-2a-3\right){x}^{2}+\left(55a^{2}-72a-203\right){x}-288a^{2}+366a+1050$ |
| 125.6-c2 |
125.6-c |
$4$ |
$10$ |
3.3.169.1 |
$3$ |
$[3, 0]$ |
125.6 |
\( 5^{3} \) |
\( 5^{8} \) |
$2.59757$ |
$(-a^2+2a+3), (-a+1)$ |
$1$ |
$\Z/10\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B.1.1 |
$1$ |
\( 2 \cdot 5 \) |
$0.752165662$ |
$90.63000163$ |
1.573125580 |
\( -\frac{2843862}{3125} a^{2} + \frac{4771131}{3125} a + \frac{12367976}{3125} \) |
\( \bigl[a^{2} - a - 3\) , \( a^{2} - 2 a - 3\) , \( a^{2} - 3\) , \( 5 a^{2} - 7 a - 18\) , \( -4 a^{2} + 4 a + 13\bigr] \) |
${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(a^{2}-2a-3\right){x}^{2}+\left(5a^{2}-7a-18\right){x}-4a^{2}+4a+13$ |
| 125.6-c3 |
125.6-c |
$4$ |
$10$ |
3.3.169.1 |
$3$ |
$[3, 0]$ |
125.6 |
\( 5^{3} \) |
\( 5^{5} \) |
$2.59757$ |
$(-a^2+2a+3), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B.1.2 |
$1$ |
\( 2^{2} \) |
$1.880414155$ |
$3.625200065$ |
1.573125580 |
\( \frac{917921432246848}{25} a^{2} + \frac{1515529783362901}{25} a + \frac{346230473004096}{25} \) |
\( \bigl[a^{2} - a - 2\) , \( a^{2} - 4\) , \( 1\) , \( 298 a^{2} - 455 a - 1194\) , \( 3483 a^{2} - 5075 a - 13596\bigr] \) |
${y}^2+\left(a^{2}-a-2\right){x}{y}+{y}={x}^{3}+\left(a^{2}-4\right){x}^{2}+\left(298a^{2}-455a-1194\right){x}+3483a^{2}-5075a-13596$ |
| 125.6-c4 |
125.6-c |
$4$ |
$10$ |
3.3.169.1 |
$3$ |
$[3, 0]$ |
125.6 |
\( 5^{3} \) |
\( 5^{4} \) |
$2.59757$ |
$(-a^2+2a+3), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B.1.2 |
$1$ |
\( 2 \) |
$3.760828310$ |
$3.625200065$ |
1.573125580 |
\( -\frac{116413326867}{5} a^{2} + \frac{148272075696}{5} a + \frac{425000233856}{5} \) |
\( \bigl[a^{2} - a - 2\) , \( a^{2} - 4\) , \( 1\) , \( 323 a^{2} - 415 a - 1184\) , \( 3704 a^{2} - 4733 a - 13544\bigr] \) |
${y}^2+\left(a^{2}-a-2\right){x}{y}+{y}={x}^{3}+\left(a^{2}-4\right){x}^{2}+\left(323a^{2}-415a-1184\right){x}+3704a^{2}-4733a-13544$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.