Learn more

Refine search


Results (26 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
96.6-a1 96.6-a \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $18.22505448$ 1.206983718 \( \frac{625}{3} a + \frac{2125}{3} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -2173 a + 9280\) , \( -868440 a + 3712504\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2173a+9280\right){x}-868440a+3712504$
96.6-a2 96.6-a \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $36.45010896$ 1.206983718 \( -\frac{7375}{3} a + 12375 \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -12 a - 38\) , \( -79 a - 259\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-12a-38\right){x}-79a-259$
96.6-a3 96.6-a \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $36.45010896$ 1.206983718 \( -\frac{153722875}{3} a + \frac{657508625}{3} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -157 a - 513\) , \( 1572 a + 5148\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-157a-513\right){x}+1572a+5148$
96.6-a4 96.6-a \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $9.112527241$ 1.206983718 \( \frac{885625}{9} a + \frac{2934125}{9} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -212 a - 693\) , \( -4193 a - 13732\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-212a-693\right){x}-4193a-13732$
96.6-b1 96.6-b \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.46322522$ 3.301589017 \( \frac{625}{3} a + \frac{2125}{3} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -2 a - 2\) , \( -a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-2a-2\right){x}-a-1$
96.6-b2 96.6-b \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $24.92645045$ 3.301589017 \( -\frac{7375}{3} a + 12375 \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 116 a - 461\) , \( 1090 a - 4620\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(116a-461\right){x}+1090a-4620$
96.6-b3 96.6-b \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.231612613$ 3.301589017 \( -\frac{153722875}{3} a + \frac{657508625}{3} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 1771 a - 7536\) , \( 76789 a - 328227\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1771a-7536\right){x}+76789a-328227$
96.6-b4 96.6-b \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $24.92645045$ 3.301589017 \( \frac{885625}{9} a + \frac{2934125}{9} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 316 a - 1316\) , \( -4581 a + 19623\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(316a-1316\right){x}-4581a+19623$
96.6-c1 96.6-c \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.338499097$ $6.309588571$ 2.263138408 \( -\frac{1211377}{6561} a + \frac{818939}{729} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 927 a + 3035\) , \( 63324 a + 207380\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(927a+3035\right){x}+63324a+207380$
96.6-c2 96.6-c \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.676998194$ $12.61917714$ 2.263138408 \( -\frac{2972645}{81} a + \frac{13229111}{81} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -528 a - 1730\) , \( 9606 a + 31458\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-528a-1730\right){x}+9606a+31458$
96.6-c3 96.6-c \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.353996389$ $3.154794285$ 2.263138408 \( -\frac{95313853375}{9} a + \frac{135819641159}{3} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -2328 a - 7625\) , \( -114369 a - 374550\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-2328a-7625\right){x}-114369a-374550$
96.6-c4 96.6-c \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.353996389$ $12.61917714$ 2.263138408 \( \frac{38140243}{9} a + \frac{41635117}{3} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 2173 a - 9287\) , \( 491496 a - 2101104\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(2173a-9287\right){x}+491496a-2101104$
96.6-d1 96.6-d \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.631200657$ 1.394044163 \( -\frac{62998269440}{3} a - 68771386368 \) \( \bigl[0\) , \( -a\) , \( a + 1\) , \( -1340 a - 4385\) , \( -49989 a - 163710\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-1340a-4385\right){x}-49989a-163710$
96.6-e1 96.6-e \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.744410973$ $4.583070560$ 2.880059218 \( -\frac{1211377}{6561} a + \frac{818939}{729} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 179 a - 737\) , \( -99 a + 469\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(179a-737\right){x}-99a+469$
96.6-e2 96.6-e \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.372205486$ $18.33228224$ 2.880059218 \( -\frac{2972645}{81} a + \frac{13229111}{81} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 124 a - 502\) , \( -1461 a + 6291\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(124a-502\right){x}-1461a+6291$
96.6-e3 96.6-e \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.186102743$ $18.33228224$ 2.880059218 \( -\frac{95313853375}{9} a + \frac{135819641159}{3} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 1924 a - 8197\) , \( -90246 a + 385839\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(1924a-8197\right){x}-90246a+385839$
96.6-e4 96.6-e \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.186102743$ $9.166141121$ 2.880059218 \( \frac{38140243}{9} a + \frac{41635117}{3} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -14 a - 46\) , \( -95 a - 311\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-14a-46\right){x}-95a-311$
96.6-f1 96.6-f \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $7.072896391$ 3.747312051 \( -\frac{62998269440}{3} a - 68771386368 \) \( \bigl[0\) , \( -a + 1\) , \( a + 1\) , \( 2246 a - 9598\) , \( 122571 a - 523989\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(2246a-9598\right){x}+122571a-523989$
96.6-g1 96.6-g \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.031356697$ $12.57935562$ 2.089831520 \( -\frac{3544576}{81} a - \frac{34825216}{243} \) \( \bigl[0\) , \( a - 1\) , \( a + 1\) , \( 12 a - 48\) , \( -1200 a + 5124\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(12a-48\right){x}-1200a+5124$
96.6-h1 96.6-h \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.580604732$ $23.47706964$ 1.805456511 \( -\frac{511}{3} a + \frac{4373}{3} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 22 a - 52\) , \( -31 a + 185\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(22a-52\right){x}-31a+185$
96.6-h2 96.6-h \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.290302366$ $23.47706964$ 1.805456511 \( -150535 a + \frac{1941703}{3} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 222 a - 907\) , \( -3505 a + 15036\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(222a-907\right){x}-3505a+15036$
96.6-i1 96.6-i \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.329567119$ $26.83622981$ 4.726006783 \( -\frac{511}{3} a + \frac{4373}{3} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 30 a + 100\) , \( 253 a + 829\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(30a+100\right){x}+253a+829$
96.6-i2 96.6-i \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.664783559$ $13.41811490$ 4.726006783 \( -150535 a + \frac{1941703}{3} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -170 a - 555\) , \( 1297 a + 4248\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-170a-555\right){x}+1297a+4248$
96.6-j1 96.6-j \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $2.990876587$ $1.716954765$ 5.441390645 \( -\frac{3544576}{81} a - \frac{34825216}{243} \) \( \bigl[0\) , \( a\) , \( a + 1\) , \( -3334 a - 10915\) , \( -208908 a - 684159\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-3334a-10915\right){x}-208908a-684159$
96.6-k1 96.6-k \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.121206357$ $8.706868415$ 1.118252659 \( \frac{512}{3} a + \frac{1024}{3} \) \( \bigl[0\) , \( a\) , \( a + 1\) , \( 5134 a + 16817\) , \( 312027 a + 1021860\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(5134a+16817\right){x}+312027a+1021860$
96.6-l1 96.6-l \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.415474272$ $15.26825083$ 6.721806116 \( \frac{512}{3} a + \frac{1024}{3} \) \( \bigl[0\) , \( a - 1\) , \( a + 1\) , \( 4\) , \( -a - 1\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+4{x}-a-1$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.