Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
96.6-a1 |
96.6-a |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{9} \cdot 3 \) |
$2.11176$ |
$(a+3), (4a+13)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$18.22505448$ |
1.206983718 |
\( \frac{625}{3} a + \frac{2125}{3} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -2173 a + 9280\) , \( -868440 a + 3712504\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2173a+9280\right){x}-868440a+3712504$ |
96.6-a2 |
96.6-a |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{6} \cdot 3^{2} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{2} \) |
$1$ |
$36.45010896$ |
1.206983718 |
\( -\frac{7375}{3} a + 12375 \) |
\( \bigl[a + 1\) , \( a\) , \( 0\) , \( -12 a - 38\) , \( -79 a - 259\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-12a-38\right){x}-79a-259$ |
96.6-a3 |
96.6-a |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{9} \cdot 3 \) |
$2.11176$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 1 \) |
$1$ |
$36.45010896$ |
1.206983718 |
\( -\frac{153722875}{3} a + \frac{657508625}{3} \) |
\( \bigl[a + 1\) , \( a\) , \( 0\) , \( -157 a - 513\) , \( 1572 a + 5148\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-157a-513\right){x}+1572a+5148$ |
96.6-a4 |
96.6-a |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{12} \cdot 3^{4} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$9.112527241$ |
1.206983718 |
\( \frac{885625}{9} a + \frac{2934125}{9} \) |
\( \bigl[a + 1\) , \( a\) , \( 0\) , \( -212 a - 693\) , \( -4193 a - 13732\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-212a-693\right){x}-4193a-13732$ |
96.6-b1 |
96.6-b |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{9} \cdot 3 \) |
$2.11176$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$12.46322522$ |
3.301589017 |
\( \frac{625}{3} a + \frac{2125}{3} \) |
\( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -2 a - 2\) , \( -a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-2a-2\right){x}-a-1$ |
96.6-b2 |
96.6-b |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{6} \cdot 3^{2} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$4$ |
\( 2^{2} \) |
$1$ |
$24.92645045$ |
3.301589017 |
\( -\frac{7375}{3} a + 12375 \) |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 116 a - 461\) , \( 1090 a - 4620\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(116a-461\right){x}+1090a-4620$ |
96.6-b3 |
96.6-b |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{9} \cdot 3 \) |
$2.11176$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$16$ |
\( 1 \) |
$1$ |
$6.231612613$ |
3.301589017 |
\( -\frac{153722875}{3} a + \frac{657508625}{3} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 1771 a - 7536\) , \( 76789 a - 328227\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1771a-7536\right){x}+76789a-328227$ |
96.6-b4 |
96.6-b |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{12} \cdot 3^{4} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$24.92645045$ |
3.301589017 |
\( \frac{885625}{9} a + \frac{2934125}{9} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 316 a - 1316\) , \( -4581 a + 19623\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(316a-1316\right){x}-4581a+19623$ |
96.6-c1 |
96.6-c |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( - 2^{9} \cdot 3^{16} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.338499097$ |
$6.309588571$ |
2.263138408 |
\( -\frac{1211377}{6561} a + \frac{818939}{729} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 927 a + 3035\) , \( 63324 a + 207380\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(927a+3035\right){x}+63324a+207380$ |
96.6-c2 |
96.6-c |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{6} \cdot 3^{8} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.676998194$ |
$12.61917714$ |
2.263138408 |
\( -\frac{2972645}{81} a + \frac{13229111}{81} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -528 a - 1730\) , \( 9606 a + 31458\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-528a-1730\right){x}+9606a+31458$ |
96.6-c3 |
96.6-c |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{12} \cdot 3^{4} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.353996389$ |
$3.154794285$ |
2.263138408 |
\( -\frac{95313853375}{9} a + \frac{135819641159}{3} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -2328 a - 7625\) , \( -114369 a - 374550\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-2328a-7625\right){x}-114369a-374550$ |
96.6-c4 |
96.6-c |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( - 2^{9} \cdot 3^{4} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.353996389$ |
$12.61917714$ |
2.263138408 |
\( \frac{38140243}{9} a + \frac{41635117}{3} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 2173 a - 9287\) , \( 491496 a - 2101104\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(2173a-9287\right){x}+491496a-2101104$ |
96.6-d1 |
96.6-d |
$1$ |
$1$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{12} \cdot 3^{2} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$2.631200657$ |
1.394044163 |
\( -\frac{62998269440}{3} a - 68771386368 \) |
\( \bigl[0\) , \( -a\) , \( a + 1\) , \( -1340 a - 4385\) , \( -49989 a - 163710\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-1340a-4385\right){x}-49989a-163710$ |
96.6-e1 |
96.6-e |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( - 2^{9} \cdot 3^{16} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$4.744410973$ |
$4.583070560$ |
2.880059218 |
\( -\frac{1211377}{6561} a + \frac{818939}{729} \) |
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 179 a - 737\) , \( -99 a + 469\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(179a-737\right){x}-99a+469$ |
96.6-e2 |
96.6-e |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{6} \cdot 3^{8} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{2} \) |
$2.372205486$ |
$18.33228224$ |
2.880059218 |
\( -\frac{2972645}{81} a + \frac{13229111}{81} \) |
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 124 a - 502\) , \( -1461 a + 6291\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(124a-502\right){x}-1461a+6291$ |
96.6-e3 |
96.6-e |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{12} \cdot 3^{4} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.186102743$ |
$18.33228224$ |
2.880059218 |
\( -\frac{95313853375}{9} a + \frac{135819641159}{3} \) |
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 1924 a - 8197\) , \( -90246 a + 385839\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(1924a-8197\right){x}-90246a+385839$ |
96.6-e4 |
96.6-e |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( - 2^{9} \cdot 3^{4} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.186102743$ |
$9.166141121$ |
2.880059218 |
\( \frac{38140243}{9} a + \frac{41635117}{3} \) |
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -14 a - 46\) , \( -95 a - 311\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-14a-46\right){x}-95a-311$ |
96.6-f1 |
96.6-f |
$1$ |
$1$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{12} \cdot 3^{2} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$7.072896391$ |
3.747312051 |
\( -\frac{62998269440}{3} a - 68771386368 \) |
\( \bigl[0\) , \( -a + 1\) , \( a + 1\) , \( 2246 a - 9598\) , \( 122571 a - 523989\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(2246a-9598\right){x}+122571a-523989$ |
96.6-g1 |
96.6-g |
$1$ |
$1$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{12} \cdot 3^{10} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \cdot 5 \) |
$0.031356697$ |
$12.57935562$ |
2.089831520 |
\( -\frac{3544576}{81} a - \frac{34825216}{243} \) |
\( \bigl[0\) , \( a - 1\) , \( a + 1\) , \( 12 a - 48\) , \( -1200 a + 5124\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(12a-48\right){x}-1200a+5124$ |
96.6-h1 |
96.6-h |
$2$ |
$2$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( - 2^{6} \cdot 3 \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.580604732$ |
$23.47706964$ |
1.805456511 |
\( -\frac{511}{3} a + \frac{4373}{3} \) |
\( \bigl[a + 1\) , \( a\) , \( 0\) , \( 22 a - 52\) , \( -31 a + 185\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(22a-52\right){x}-31a+185$ |
96.6-h2 |
96.6-h |
$2$ |
$2$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{12} \cdot 3^{2} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.290302366$ |
$23.47706964$ |
1.805456511 |
\( -150535 a + \frac{1941703}{3} \) |
\( \bigl[a + 1\) , \( a\) , \( 0\) , \( 222 a - 907\) , \( -3505 a + 15036\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(222a-907\right){x}-3505a+15036$ |
96.6-i1 |
96.6-i |
$2$ |
$2$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( - 2^{6} \cdot 3 \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.329567119$ |
$26.83622981$ |
4.726006783 |
\( -\frac{511}{3} a + \frac{4373}{3} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 30 a + 100\) , \( 253 a + 829\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(30a+100\right){x}+253a+829$ |
96.6-i2 |
96.6-i |
$2$ |
$2$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{12} \cdot 3^{2} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.664783559$ |
$13.41811490$ |
4.726006783 |
\( -150535 a + \frac{1941703}{3} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -170 a - 555\) , \( 1297 a + 4248\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-170a-555\right){x}+1297a+4248$ |
96.6-j1 |
96.6-j |
$1$ |
$1$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{12} \cdot 3^{10} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$2.990876587$ |
$1.716954765$ |
5.441390645 |
\( -\frac{3544576}{81} a - \frac{34825216}{243} \) |
\( \bigl[0\) , \( a\) , \( a + 1\) , \( -3334 a - 10915\) , \( -208908 a - 684159\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-3334a-10915\right){x}-208908a-684159$ |
96.6-k1 |
96.6-k |
$1$ |
$1$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{12} \cdot 3^{2} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$0.121206357$ |
$8.706868415$ |
1.118252659 |
\( \frac{512}{3} a + \frac{1024}{3} \) |
\( \bigl[0\) , \( a\) , \( a + 1\) , \( 5134 a + 16817\) , \( 312027 a + 1021860\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(5134a+16817\right){x}+312027a+1021860$ |
96.6-l1 |
96.6-l |
$1$ |
$1$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
96.6 |
\( 2^{5} \cdot 3 \) |
\( 2^{12} \cdot 3^{2} \) |
$2.11176$ |
$(a+3), (4a+13)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$0.415474272$ |
$15.26825083$ |
6.721806116 |
\( \frac{512}{3} a + \frac{1024}{3} \) |
\( \bigl[0\) , \( a - 1\) , \( a + 1\) , \( 4\) , \( -a - 1\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+4{x}-a-1$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.