Learn more

Refine search


Results (44 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
96.4-a1 96.4-a \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.802508557$ 1.488127972 \( -\frac{449724950229373}{5308416} a + \frac{1922536988893439}{5308416} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 4615 a + 15115\) , \( -4216389 a - 13808325\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(4615a+15115\right){x}-4216389a-13808325$
96.4-a2 96.4-a \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.605017115$ 1.488127972 \( \frac{248028267187}{76527504} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -133 a - 657\) , \( 1256 a + 4664\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-133a-657\right){x}+1256a+4664$
96.4-a3 96.4-a \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.605017115$ 1.488127972 \( \frac{14580432307}{559872} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -53 a - 257\) , \( -504 a - 2088\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-53a-257\right){x}-504a-2088$
96.4-a4 96.4-a \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.802508557$ 1.488127972 \( \frac{449724950229373}{5308416} a + \frac{736406019332033}{2654208} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -854 a + 3683\) , \( 340051 a - 1453661\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-854a+3683\right){x}+340051a-1453661$
96.4-b1 96.4-b \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.871346892$ $16.36852408$ 3.778271621 \( -\frac{351013}{144} a + \frac{1701239}{144} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 17 a - 82\) , \( -51 a + 213\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(17a-82\right){x}-51a+213$
96.4-b2 96.4-b \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.742693784$ $16.36852408$ 3.778271621 \( -\frac{24335}{108} a + \frac{333893}{108} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 9508 a - 40648\) , \( 727273 a - 3109031\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(9508a-40648\right){x}+727273a-3109031$
96.4-b3 96.4-b \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.485387569$ $4.092131021$ 3.778271621 \( \frac{13159651}{1458} a + \frac{4901983}{162} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -23702 a + 101322\) , \( 4672577 a - 19974879\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-23702a+101322\right){x}+4672577a-19974879$
96.4-b4 96.4-b \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.485387569$ $16.36852408$ 3.778271621 \( -\frac{18247675}{18} a + \frac{104191529}{18} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -581 a - 1895\) , \( 14004 a + 45867\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-581a-1895\right){x}+14004a+45867$
96.4-c1 96.4-c \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $13.51429459$ 3.580024093 \( -\frac{152551}{768} a + \frac{1106381}{768} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 41 a + 142\) , \( 469 a + 1541\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(41a+142\right){x}+469a+1541$
96.4-c2 96.4-c \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.51429459$ 3.580024093 \( -\frac{436639}{48} a + \frac{691831}{16} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 4 a - 20\) , \( 9 a - 39\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(4a-20\right){x}+9a-39$
96.4-c3 96.4-c \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.378573647$ 3.580024093 \( -\frac{24913903427}{36} a + \frac{106505465453}{36} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 64 a - 280\) , \( 553 a - 2375\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(64a-280\right){x}+553a-2375$
96.4-c4 96.4-c \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.51429459$ 3.580024093 \( \frac{20041777}{12} a + \frac{65635153}{12} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 102 a - 394\) , \( 52512 a - 224432\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(102a-394\right){x}+52512a-224432$
96.4-d1 96.4-d \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $18.75454831$ 2.484100608 \( -\frac{31759}{48} a + \frac{135557}{48} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 749 a - 3204\) , \( -17453 a + 74611\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(749a-3204\right){x}-17453a+74611$
96.4-d2 96.4-d \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $18.75454831$ 2.484100608 \( -\frac{9289735}{4} a + \frac{120300487}{12} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 11334 a - 48454\) , \( -1274937 a + 5450251\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(11334a-48454\right){x}-1274937a+5450251$
96.4-e1 96.4-e \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.826928706$ $6.217324322$ 3.008968840 \( -\frac{163415}{768} a + \frac{589213}{768} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -16 a - 48\) , \( -212 a - 692\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-16a-48\right){x}-212a-692$
96.4-e2 96.4-e \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.913464353$ $12.43464864$ 3.008968840 \( -\frac{370613256209}{2} a + \frac{4753022980441}{6} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 106276 a - 454300\) , \( -36558610 a + 156285050\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(106276a-454300\right){x}-36558610a+156285050$
96.4-e3 96.4-e \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.456732176$ $24.86929729$ 3.008968840 \( -\frac{1878415}{12} a + \frac{24152911}{36} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 6646 a - 28390\) , \( -567172 a + 2424632\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(6646a-28390\right){x}-567172a+2424632$
96.4-e4 96.4-e \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.228366088$ $24.86929729$ 3.008968840 \( \frac{1539923}{54} a + \frac{15047213}{162} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -1975 a - 6465\) , \( 86004 a + 281655\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-1975a-6465\right){x}+86004a+281655$
96.4-e5 96.4-e \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.913464353$ $12.43464864$ 3.008968840 \( \frac{817075}{16} a + \frac{8125069}{48} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 7 a + 4\) , \( 36\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(7a+4\right){x}+36$
96.4-e6 96.4-e \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.826928706$ $3.108662161$ 3.008968840 \( \frac{237846527975}{12} a + \frac{778928661611}{12} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 27 a - 96\) , \( 100 a - 464\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(27a-96\right){x}+100a-464$
96.4-f1 96.4-f \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $14.56141634$ 4.821766779 \( -\frac{23623}{108} a + \frac{111341}{108} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 6 a + 20\) , \( -10 a - 35\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(6a+20\right){x}-10a-35$
96.4-f2 96.4-f \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.280708174$ 4.821766779 \( \frac{698507}{486} a + \frac{3118087}{486} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -49 a - 160\) , \( -537 a - 1761\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-49a-160\right){x}-537a-1761$
96.4-g1 96.4-g \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $25.79187584$ 1.708108705 \( -\frac{31759}{48} a + \frac{135557}{48} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 4 a + 16\) , \( 7 a + 22\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(4a+16\right){x}+7a+22$
96.4-g2 96.4-g \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.89593792$ 1.708108705 \( -\frac{9289735}{4} a + \frac{120300487}{12} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -11 a - 34\) , \( 16 a + 52\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-11a-34\right){x}+16a+52$
96.4-h1 96.4-h \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.702891533$ $11.44078906$ 4.260561653 \( -\frac{163415}{768} a + \frac{589213}{768} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -347 a + 1474\) , \( 2233 a - 9551\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-347a+1474\right){x}+2233a-9551$
96.4-h2 96.4-h \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.623132268$ $2.860197265$ 4.260561653 \( -\frac{370613256209}{2} a + \frac{4753022980441}{6} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 22 a + 71\) , \( 41 a + 113\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(22a+71\right){x}+41a+113$
96.4-h3 96.4-h \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.811566134$ $11.44078906$ 4.260561653 \( -\frac{1878415}{12} a + \frac{24152911}{36} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -8 a - 19\) , \( -7 a - 19\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-8a-19\right){x}-7a-19$
96.4-h4 96.4-h \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.623132268$ $5.720394531$ 4.260561653 \( \frac{1539923}{54} a + \frac{15047213}{162} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 10 a - 45\) , \( 71 a - 303\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(10a-45\right){x}+71a-303$
96.4-h5 96.4-h \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1.405783067$ $22.88157812$ 4.260561653 \( \frac{817075}{16} a + \frac{8125069}{48} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -11681 a - 38253\) , \( 1289371 a + 4222583\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-11681a-38253\right){x}+1289371a+4222583$
96.4-h6 96.4-h \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.811566134$ $22.88157812$ 4.260561653 \( \frac{237846527975}{12} a + \frac{778928661611}{12} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -186861 a - 611953\) , \( 84731071 a + 277487243\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-186861a-611953\right){x}+84731071a+277487243$
96.4-i1 96.4-i \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $21.13304394$ 1.399570025 \( -\frac{23623}{108} a + \frac{111341}{108} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 294 a - 1245\) , \( 585 a - 2493\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(294a-1245\right){x}+585a-2493$
96.4-i2 96.4-i \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.56652197$ 1.399570025 \( \frac{698507}{486} a + \frac{3118087}{486} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -1161 a + 4975\) , \( 4317 a - 18447\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-1161a+4975\right){x}+4317a-18447$
96.4-j1 96.4-j \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.179115172$ $9.242546028$ 2.631284547 \( -\frac{351013}{144} a + \frac{1701239}{144} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 828 a + 2716\) , \( -11648 a - 38144\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(828a+2716\right){x}-11648a-38144$
96.4-j2 96.4-j \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.358230344$ $18.48509205$ 2.631284547 \( -\frac{24335}{108} a + \frac{333893}{108} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 3 a + 12\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(3a+12\right){x}$
96.4-j3 96.4-j \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.179115172$ $9.242546028$ 2.631284547 \( \frac{13159651}{1458} a + \frac{4901983}{162} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -7 a - 18\) , \( 6 a + 18\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-7a-18\right){x}+6a+18$
96.4-j4 96.4-j \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.716460688$ $18.48509205$ 2.631284547 \( -\frac{18247675}{18} a + \frac{104191529}{18} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 273 a - 1146\) , \( -4494 a + 19230\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(273a-1146\right){x}-4494a+19230$
96.4-k1 96.4-k \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $9.247932164$ 2.449837077 \( -\frac{152551}{768} a + \frac{1106381}{768} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 255 a - 1069\) , \( 1963 a - 8373\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(255a-1069\right){x}+1963a-8373$
96.4-k2 96.4-k \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $18.49586432$ 2.449837077 \( -\frac{436639}{48} a + \frac{691831}{16} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -9821 a - 32160\) , \( -833280 a - 2728924\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-9821a-32160\right){x}-833280a-2728924$
96.4-k3 96.4-k \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $18.49586432$ 2.449837077 \( -\frac{24913903427}{36} a + \frac{106505465453}{36} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -52161 a - 170820\) , \( 11740716 a + 38449872\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-52161a-170820\right){x}+11740716a+38449872$
96.4-k4 96.4-k \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $9.247932164$ 2.449837077 \( \frac{20041777}{12} a + \frac{65635153}{12} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -50 a - 162\) , \( -540 a - 1768\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-50a-162\right){x}-540a-1768$
96.4-l1 96.4-l \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $4.178695124$ 2.213926761 \( -\frac{449724950229373}{5308416} a + \frac{1922536988893439}{5308416} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 6007 a - 25637\) , \( -495669 a + 2118999\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(6007a-25637\right){x}-495669a+2118999$
96.4-l2 96.4-l \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.044673781$ 2.213926761 \( \frac{248028267187}{76527504} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 2727736 a - 11660855\) , \( 3260456517 a - 13938181707\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(2727736a-11660855\right){x}+3260456517a-13938181707$
96.4-l3 96.4-l \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.178695124$ 2.213926761 \( \frac{14580432307}{559872} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 1060616 a - 4534055\) , \( -1114243483 a + 4763298645\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(1060616a-4534055\right){x}-1114243483a+4763298645$
96.4-l4 96.4-l \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.178695124$ 2.213926761 \( \frac{449724950229373}{5308416} a + \frac{736406019332033}{2654208} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -32262 a - 105654\) , \( 6009228 a + 19679724\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-32262a-105654\right){x}+6009228a+19679724$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.