Learn more

Refine search


Results (24 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
192.4-a1 192.4-a \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.094252160$ $6.770407563$ 5.916525472 \( -\frac{1638090289}{69984} a + \frac{3499732859}{34992} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( 98 a - 413\) , \( -926 a + 3963\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(98a-413\right){x}-926a+3963$
192.4-a2 192.4-a \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.047126080$ $13.54081512$ 5.916525472 \( \frac{2229520813}{82944} a + \frac{3649348529}{41472} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( 3 a - 8\) , \( -31 a + 134\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(3a-8\right){x}-31a+134$
192.4-b1 192.4-b \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.147835330$ $7.492300502$ 2.278176375 \( -\frac{38131841}{6} a + 27168441 \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 17672 a - 75536\) , \( 2506014 a - 10712996\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(17672a-75536\right){x}+2506014a-10712996$
192.4-b2 192.4-b \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.573917665$ $14.98460100$ 2.278176375 \( \frac{40807}{12} a + \frac{29555}{6} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 1067 a - 4551\) , \( 42938 a - 183550\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(1067a-4551\right){x}+42938a-183550$
192.4-c1 192.4-c \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.055980386$ $7.352463743$ 3.052947854 \( -\frac{24817}{324} a + \frac{9059129}{4374} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -37957 a - 124309\) , \( 684104 a + 2240382\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-37957a-124309\right){x}+684104a+2240382$
192.4-c2 192.4-c \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.111960773$ $14.70492748$ 3.052947854 \( \frac{67650661}{1296} a + \frac{111597257}{648} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -27372 a - 89644\) , \( 4737215 a + 15513985\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-27372a-89644\right){x}+4737215a+15513985$
192.4-d1 192.4-d \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $9.664863977$ 5.120570026 \( -\frac{75000761}{196608} a + \frac{51906161}{32768} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -a - 2\) , \( 13 a + 42\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-2\right){x}+13a+42$
192.4-d2 192.4-d \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.416215994$ 5.120570026 \( -\frac{98620637623651}{48} a + \frac{70265843645899}{8} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( -15841 a - 51878\) , \( -273555 a - 895870\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-15841a-51878\right){x}-273555a-895870$
192.4-d3 192.4-d \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $9.664863977$ 5.120570026 \( -\frac{1139920067}{2304} a + \frac{2671449217}{1152} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( -10276 a - 33653\) , \( 1063953 a + 3484358\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-10276a-33653\right){x}+1063953a+3484358$
192.4-d4 192.4-d \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.832431988$ 5.120570026 \( \frac{7086201848561}{1296} a + \frac{1289262372893}{72} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( -164286 a - 538023\) , \( 69887187 a + 228874752\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-164286a-538023\right){x}+69887187a+228874752$
192.4-e1 192.4-e \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.205284479$ $11.74665338$ 5.110375634 \( \frac{2256186877}{589824} a - \frac{3477920191}{294912} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -4112 a - 13460\) , \( -219994 a - 720457\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-4112a-13460\right){x}-219994a-720457$
192.4-e2 192.4-e \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.102642239$ $11.74665338$ 5.110375634 \( -\frac{574770342811}{6912} a + \frac{409533665347}{1152} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -21317 a - 69805\) , \( 3098729 a + 10148086\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-21317a-69805\right){x}+3098729a+10148086$
192.4-f1 192.4-f \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.773717125$ 1.896882838 \( \frac{2256186877}{589824} a - \frac{3477920191}{294912} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( 43 a - 161\) , \( 279 a - 1163\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(43a-161\right){x}+279a-1163$
192.4-f2 192.4-f \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.386858562$ 1.896882838 \( -\frac{574770342811}{6912} a + \frac{409533665347}{1152} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( 638 a - 2706\) , \( 16991 a - 72611\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(638a-2706\right){x}+16991a-72611$
192.4-g1 192.4-g \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.912877992$ $6.004569731$ 2.904137626 \( -\frac{75000761}{196608} a + \frac{51906161}{32768} \) \( \bigl[a\) , \( -a\) , \( 0\) , \( 13546 a - 57908\) , \( -1014720 a + 4337844\bigr] \) ${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(13546a-57908\right){x}-1014720a+4337844$
192.4-g2 192.4-g \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.912877992$ $12.00913946$ 2.904137626 \( -\frac{98620637623651}{48} a + \frac{70265843645899}{8} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 1106 a - 4718\) , \( -39383 a + 168369\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1106a-4718\right){x}-39383a+168369$
192.4-g3 192.4-g \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.825755985$ $12.00913946$ 2.904137626 \( -\frac{1139920067}{2304} a + \frac{2671449217}{1152} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 71 a - 293\) , \( -641 a + 2751\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(71a-293\right){x}-641a+2751$
192.4-g4 192.4-g \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.651511970$ $3.002284865$ 2.904137626 \( \frac{7086201848561}{1296} a + \frac{1289262372893}{72} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 61 a - 263\) , \( -795 a + 3357\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(61a-263\right){x}-795a+3357$
192.4-h1 192.4-h \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.201234166$ 1.642747061 \( -\frac{24817}{324} a + \frac{9059129}{4374} \) \( \bigl[a\) , \( -a\) , \( a\) , \( 10 a - 55\) , \( 47 a - 206\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(10a-55\right){x}+47a-206$
192.4-h2 192.4-h \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.201234166$ 1.642747061 \( \frac{67650661}{1296} a + \frac{111597257}{648} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -5 a + 10\) , \( -4 a + 11\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-5a+10\right){x}-4a+11$
192.4-i1 192.4-i \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.47105648$ 3.568570040 \( -\frac{38131841}{6} a + 27168441 \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( a + 10\) , \( -21 a - 66\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(a+10\right){x}-21a-66$
192.4-i2 192.4-i \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $26.94211297$ 3.568570040 \( \frac{40807}{12} a + \frac{29555}{6} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -4 a - 5\) , \( -5 a - 12\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-4a-5\right){x}-5a-12$
192.4-j1 192.4-j \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.811458348$ 0.479867039 \( -\frac{1638090289}{69984} a + \frac{3499732859}{34992} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -12271 a - 40182\) , \( -8930495 a - 29246630\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-12271a-40182\right){x}-8930495a-29246630$
192.4-j2 192.4-j \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.622916697$ 0.479867039 \( \frac{2229520813}{82944} a + \frac{3649348529}{41472} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -25766 a - 84377\) , \( -4403445 a - 14420916\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-25766a-84377\right){x}-4403445a-14420916$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.