Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
441.9-a1 |
441.9-a |
$2$ |
$2$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{10} \cdot 7^{3} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$9.194557460$ |
3.023151870 |
\( -\frac{247504499}{81} a - \frac{67864571}{9} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -79 a - 205\) , \( 695 a + 1764\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-79a-205\right){x}+695a+1764$ |
441.9-a2 |
441.9-a |
$2$ |
$2$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{8} \cdot 7^{3} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$4.597278730$ |
3.023151870 |
\( \frac{498881612022497}{9} a + 140872042480094 \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -1274 a - 3240\) , \( 43503 a + 110552\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-1274a-3240\right){x}+43503a+110552$ |
441.9-b1 |
441.9-b |
$2$ |
$5$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( 3^{6} \cdot 7^{6} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$2, 3, 5$ |
2Cn, 3Ns, 5B.4.1 |
$1$ |
\( 1 \) |
$1$ |
$14.82684924$ |
2.437519000 |
\( 4096 \) |
\( \bigl[0\) , \( -a + 1\) , \( 1\) , \( 48 a - 168\) , \( -186 a + 658\bigr] \) |
${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(48a-168\right){x}-186a+658$ |
441.9-b2 |
441.9-b |
$2$ |
$5$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( 3^{6} \cdot 7^{6} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$2, 3, 5$ |
2Cn, 3Ns, 5B.4.2 |
$25$ |
\( 1 \) |
$1$ |
$0.593073969$ |
2.437519000 |
\( 38477541376 \) |
\( \bigl[0\) , \( -a + 1\) , \( 1\) , \( 10198 a - 36148\) , \( 990538 a - 3507924\bigr] \) |
${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(10198a-36148\right){x}+990538a-3507924$ |
441.9-c1 |
441.9-c |
$2$ |
$2$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{20} \cdot 7^{7} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$3.948996005$ |
1.298421888 |
\( -\frac{1449791608112}{33480783} a - \frac{325818657413}{3720087} \) |
\( \bigl[a + 1\) , \( -1\) , \( a\) , \( 1174 a - 4175\) , \( -36966 a + 130912\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(1174a-4175\right){x}-36966a+130912$ |
441.9-c2 |
441.9-c |
$2$ |
$2$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( 3^{13} \cdot 7^{8} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$3.948996005$ |
1.298421888 |
\( \frac{1020689116688854}{107163} a + \frac{293830214716873}{11907} \) |
\( \bigl[a + 1\) , \( -1\) , \( a\) , \( 18579 a - 66040\) , \( -2414069 a + 8550255\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(18579a-66040\right){x}-2414069a+8550255$ |
441.9-d1 |
441.9-d |
$4$ |
$6$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{8} \cdot 7^{9} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$1$ |
$3.763493638$ |
1.237429085 |
\( -\frac{48155111}{3087} a + \frac{18937350}{343} \) |
\( \bigl[1\) , \( a + 1\) , \( 1\) , \( 80 a - 277\) , \( -694 a + 2458\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(80a-277\right){x}-694a+2458$ |
441.9-d2 |
441.9-d |
$4$ |
$6$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{12} \cdot 7^{7} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$1$ |
$3.763493638$ |
1.237429085 |
\( -\frac{26608457}{5103} a + \frac{10488103}{567} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 33 a + 83\) , \( 1128 a + 2866\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(33a+83\right){x}+1128a+2866$ |
441.9-d3 |
441.9-d |
$4$ |
$6$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{18} \cdot 7^{8} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \) |
$1$ |
$1.881746819$ |
1.237429085 |
\( \frac{82104162493}{26040609} a + \frac{23195606656}{2893401} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -692 a - 1757\) , \( 14400 a + 36592\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-692a-1757\right){x}+14400a+36592$ |
441.9-d4 |
441.9-d |
$4$ |
$6$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{10} \cdot 7^{12} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \) |
$1$ |
$1.881746819$ |
1.237429085 |
\( \frac{271552460437}{9529569} a + \frac{76675641283}{1058841} \) |
\( \bigl[1\) , \( a + 1\) , \( 1\) , \( 15 a - 77\) , \( -1666 a + 5788\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(15a-77\right){x}-1666a+5788$ |
441.9-e1 |
441.9-e |
$4$ |
$4$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{8} \cdot 7^{7} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$4.609070673$ |
1.515453102 |
\( -\frac{33776}{63} a + \frac{17839}{7} \) |
\( \bigl[a\) , \( -a\) , \( 1\) , \( 51 a - 182\) , \( 341 a - 1208\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(51a-182\right){x}+341a-1208$ |
441.9-e2 |
441.9-e |
$4$ |
$4$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( 3^{10} \cdot 7^{8} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$4$ |
\( 2^{4} \) |
$1$ |
$2.304535336$ |
1.515453102 |
\( -\frac{6273137672}{3969} a + \frac{2470185541}{441} \) |
\( \bigl[a\) , \( -a\) , \( 1\) , \( 776 a - 2752\) , \( 21667 a - 76732\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(776a-2752\right){x}+21667a-76732$ |
441.9-e3 |
441.9-e |
$4$ |
$4$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( 3^{8} \cdot 7^{7} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$1$ |
$1.152267668$ |
1.515453102 |
\( -\frac{957961400352382}{63} a + \frac{376945173009773}{7} \) |
\( \bigl[a\) , \( -a\) , \( 1\) , \( 12441 a - 44072\) , \( 1335073 a - 4727986\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(12441a-44072\right){x}+1335073a-4727986$ |
441.9-e4 |
441.9-e |
$4$ |
$4$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{14} \cdot 7^{10} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$0.576133834$ |
1.515453102 |
\( \frac{27348970029058}{15752961} a + \frac{7718451347197}{1750329} \) |
\( \bigl[a\) , \( -a\) , \( 1\) , \( 711 a - 2552\) , \( 24885 a - 88194\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(711a-2552\right){x}+24885a-88194$ |
441.9-f1 |
441.9-f |
$2$ |
$2$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{10} \cdot 7^{9} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.652746375$ |
0.214621686 |
\( -\frac{247504499}{81} a - \frac{67864571}{9} \) |
\( \bigl[a + 1\) , \( -1\) , \( a\) , \( -176 a - 530\) , \( -2689 a - 7103\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-176a-530\right){x}-2689a-7103$ |
441.9-f2 |
441.9-f |
$2$ |
$2$ |
\(\Q(\sqrt{37}) \) |
$2$ |
$[2, 0]$ |
441.9 |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{8} \cdot 7^{9} \) |
$2.49086$ |
$(a+2), (a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$0.326373187$ |
0.214621686 |
\( \frac{498881612022497}{9} a + 140872042480094 \) |
\( \bigl[a + 1\) , \( -1\) , \( a\) , \( -3021 a - 7720\) , \( -162246 a - 412881\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-3021a-7720\right){x}-162246a-412881$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.