Learn more

Refine search


Results (1-50 of 64 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
450.2-a1 450.2-a \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.934619980$ 1.526228036 \( \frac{134010805558487}{6} a - \frac{109419364548011}{2} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( -679 a - 1671\) , \( 24100 a + 59029\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-679a-1671\right){x}+24100a+59029$
450.2-a2 450.2-a \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.934619980$ 1.526228036 \( -\frac{14677}{864} a - \frac{56899}{288} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a\) , \( 97 a - 243\) , \( 2937 a - 7197\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(97a-243\right){x}+2937a-7197$
450.2-b1 450.2-b \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.765090763$ $1.570369906$ 1.962001293 \( -\frac{2849985813237}{10} a - \frac{3491001283144}{5} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( -320 a - 1302\) , \( 8071 a + 15740\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-320a-1302\right){x}+8071a+15740$
450.2-b2 450.2-b \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.255030254$ $4.711109719$ 1.962001293 \( -\frac{1061271}{500} a - \frac{656416}{125} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( -5 a - 12\) , \( 10 a + 14\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-5a-12\right){x}+10a+14$
450.2-b3 450.2-b \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.765090763$ $1.570369906$ 1.962001293 \( \frac{21355471243}{62500000} a + \frac{1734442691}{1953125} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 25 a + 93\) , \( -50 a + 179\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(25a+93\right){x}-50a+179$
450.2-c1 450.2-c \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.451032959$ 3.450119758 \( 4119 a + \frac{17829}{2} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( -6 a - 14\) , \( -15 a - 37\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(-6a-14\right){x}-15a-37$
450.2-c2 450.2-c \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.225516479$ 3.450119758 \( \frac{134610945}{2} a + 168166143 \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( -91 a - 224\) , \( -801 a - 1963\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(-91a-224\right){x}-801a-1963$
450.2-d1 450.2-d \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $1.156801532$ 3.778097985 \( -\frac{264849}{4096} a - \frac{649089}{4096} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 128 a - 314\) , \( 177781 a - 435473\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(128a-314\right){x}+177781a-435473$
450.2-d2 450.2-d \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.156801532$ 3.778097985 \( \frac{50637231}{16} a - \frac{124030899}{16} \) \( \bigl[a + 1\) , \( a - 1\) , \( 1\) , \( 221 a + 544\) , \( -6021 a - 14749\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(221a+544\right){x}-6021a-14749$
450.2-e1 450.2-e \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.755210619$ 3.066116631 \( -\frac{117133}{6} a - \frac{95441}{2} \) \( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( -a + 1\) , \( -3\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a+1\right){x}-3$
450.2-f1 450.2-f \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.256124184$ 1.842117682 \( \frac{5257055}{288} a - \frac{16436863}{384} \) \( \bigl[a + 1\) , \( -1\) , \( a\) , \( 7 a - 36\) , \( 24 a - 78\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(7a-36\right){x}+24a-78$
450.2-f2 450.2-f \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.128062092$ 1.842117682 \( -\frac{686817279595}{432} a + \frac{420680385779}{108} \) \( \bigl[a + 1\) , \( -1\) , \( a\) , \( 127 a - 516\) , \( 1584 a - 5118\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(127a-516\right){x}+1584a-5118$
450.2-g1 450.2-g \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.083228385$ 1.700948853 \( -\frac{264849}{4096} a - \frac{649089}{4096} \) \( \bigl[1\) , \( a - 1\) , \( a\) , \( a - 3\) , \( 359 a - 881\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(a-3\right){x}+359a-881$
450.2-g2 450.2-g \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.083228385$ 1.700948853 \( \frac{50637231}{16} a - \frac{124030899}{16} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 9 a + 12\) , \( 36 a + 82\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(9a+12\right){x}+36a+82$
450.2-h1 450.2-h \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.717501383$ 2.343349706 \( -\frac{157127080289}{73811250} a + \frac{251506991437}{36905625} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 1385 a - 3326\) , \( 40817 a - 99995\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1385a-3326\right){x}+40817a-99995$
450.2-h2 450.2-h \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.435002767$ 2.343349706 \( -\frac{157435045399}{6075} a + \frac{771293706343}{12150} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 1340 a - 3296\) , \( 42689 a - 104543\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1340a-3296\right){x}+42689a-104543$
450.2-h3 450.2-h \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.358750691$ 2.343349706 \( -\frac{888356554402037057}{270} a + \frac{362670044662368287}{45} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 21455 a - 52706\) , \( 2695169 a - 6602363\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(21455a-52706\right){x}+2695169a-6602363$
450.2-h4 450.2-h \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.870005534$ 2.343349706 \( \frac{20741521}{135} a + \frac{65844157}{180} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 80 a - 206\) , \( 737 a - 1775\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(80a-206\right){x}+737a-1775$
450.2-i1 450.2-i \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.376858709$ 2.769334628 \( -\frac{144826491907365081}{7629394531250} a - \frac{428327209994356681}{11444091796875} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 1\) , \( 2528 a - 6482\) , \( -99563 a + 242023\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(2528a-6482\right){x}-99563a+242023$
450.2-i2 450.2-i \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.376858709$ 2.769334628 \( -\frac{61555556959093191643}{2400} a + \frac{75389852691300014519}{1200} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 1\) , \( 47843 a - 117317\) , \( 8954122 a - 21932267\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(47843a-117317\right){x}+8954122a-21932267$
450.2-i3 450.2-i \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.130576127$ 2.769334628 \( -\frac{6386194177}{62500} a + \frac{212053411357}{843750} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 1\) , \( 593 a - 1442\) , \( 12613 a - 30911\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(593a-1442\right){x}+12613a-30911$
450.2-i4 450.2-i \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.261152255$ 2.769334628 \( \frac{2738717}{4500} a + \frac{1289409}{1000} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 1\) , \( 23 a - 62\) , \( 337 a - 827\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(23a-62\right){x}+337a-827$
450.2-i5 450.2-i \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.753717418$ 2.769334628 \( \frac{282790684261}{3840} a - \frac{445648835159}{2560} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 1\) , \( 2963 a - 7397\) , \( 141514 a - 345995\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(2963a-7397\right){x}+141514a-345995$
450.2-i6 450.2-i \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.753717418$ 2.769334628 \( \frac{8573895721639981}{5859375} a + \frac{14001113809657161}{3906250} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 1\) , \( -277 a + 388\) , \( -8381 a + 18685\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-277a+388\right){x}-8381a+18685$
450.2-j1 450.2-j \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.068340911$ $20.43561055$ 2.280619064 \( -\frac{117133}{6} a - \frac{95441}{2} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -35 a + 87\) , \( -718 a + 1759\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-35a+87\right){x}-718a+1759$
450.2-k1 450.2-k \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.082162467$ $31.52665273$ 2.114977283 \( 4119 a + \frac{17829}{2} \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( 2 a - 3\) , \( -3 a + 5\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(2a-3\right){x}-3a+5$
450.2-k2 450.2-k \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.164324934$ $31.52665273$ 2.114977283 \( \frac{134610945}{2} a + 168166143 \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( 37 a - 93\) , \( -176 a + 437\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(37a-93\right){x}-176a+437$
450.2-l1 450.2-l \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.033939752$ 3.798937226 \( -\frac{2849985813237}{10} a - \frac{3491001283144}{5} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( 10427 a - 25568\) , \( -900947 a + 2206823\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(10427a-25568\right){x}-900947a+2206823$
450.2-l2 450.2-l \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.101819256$ 3.798937226 \( -\frac{1061271}{500} a - \frac{656416}{125} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( 62 a - 158\) , \( -2465 a + 6035\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(62a-158\right){x}-2465a+6035$
450.2-l3 450.2-l \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.033939752$ 3.798937226 \( \frac{21355471243}{62500000} a + \frac{1734442691}{1953125} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -568 a + 1387\) , \( 65545 a - 160555\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-568a+1387\right){x}+65545a-160555$
450.2-m1 450.2-m \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.146552724$ 1.284574770 \( \frac{87641}{2} a - 118394 \) \( \bigl[a + 1\) , \( -1\) , \( a\) , \( -190 a - 468\) , \( 2273 a + 5566\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-190a-468\right){x}+2273a+5566$
450.2-m2 450.2-m \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.146552724$ 1.284574770 \( -\frac{1151}{8} a + \frac{707}{2} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -88 a + 219\) , \( -904 a + 2213\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-88a+219\right){x}-904a+2213$
450.2-n1 450.2-n \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.983067925$ $3.407501979$ 2.735105064 \( 4119 a + \frac{17829}{2} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -20 a - 54\) , \( 84 a + 196\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-20a-54\right){x}+84a+196$
450.2-n2 450.2-n \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.966135850$ $3.407501979$ 2.735105064 \( \frac{134610945}{2} a + 168166143 \) \( \bigl[1\) , \( -1\) , \( a\) , \( -305 a - 864\) , \( 5253 a + 12400\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-305a-864\right){x}+5253a+12400$
450.2-o1 450.2-o \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.679324541$ $0.990517784$ 2.716322170 \( -\frac{157127080289}{73811250} a + \frac{251506991437}{36905625} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 1287 a + 3084\) , \( -10125 a - 24588\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(1287a+3084\right){x}-10125a-24588$
450.2-o2 450.2-o \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.839662270$ $3.962071136$ 2.716322170 \( -\frac{157435045399}{6075} a + \frac{771293706343}{12150} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -318 a - 846\) , \( -1656 a - 3834\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-318a-846\right){x}-1656a-3834$
450.2-o3 450.2-o \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.679324541$ $3.962071136$ 2.716322170 \( -\frac{888356554402037057}{270} a + \frac{362670044662368287}{45} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -2883 a - 8136\) , \( 141309 a + 359856\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-2883a-8136\right){x}+141309a+359856$
450.2-o4 450.2-o \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.419831135$ $3.962071136$ 2.716322170 \( \frac{20741521}{135} a + \frac{65844157}{180} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -258 a - 636\) , \( -3720 a - 9108\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-258a-636\right){x}-3720a-9108$
450.2-p1 450.2-p \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.244968809$ $0.944915579$ 1.921037516 \( -\frac{264849}{4096} a - \frac{649089}{4096} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -20 a - 54\) , \( -384 a - 42\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-20a-54\right){x}-384a-42$
450.2-p2 450.2-p \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.414989603$ $8.504240212$ 1.921037516 \( \frac{50637231}{16} a - \frac{124030899}{16} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 20 a - 39\) , \( -65 a + 187\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(20a-39\right){x}-65a+187$
450.2-q1 450.2-q \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.457485474$ $6.261267847$ 4.677609455 \( -\frac{3129954531651}{50} a + \frac{7666791655041}{50} \) \( \bigl[a + 1\) , \( a - 1\) , \( 1\) , \( 4 a - 353\) , \( -423 a + 2019\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(4a-353\right){x}-423a+2019$
450.2-q2 450.2-q \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.228742737$ $6.261267847$ 4.677609455 \( \frac{1205361}{10} a - \frac{5155677}{20} \) \( \bigl[a + 1\) , \( a - 1\) , \( 1\) , \( -26 a - 83\) , \( -201 a - 429\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-26a-83\right){x}-201a-429$
450.2-q3 450.2-q \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.076247579$ $6.261267847$ 4.677609455 \( \frac{64291011}{4000} a + \frac{317033523}{8000} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( -83 a + 202\) , \( -1422 a + 3483\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-83a+202\right){x}-1422a+3483$
450.2-q4 450.2-q \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.152495158$ $6.261267847$ 4.677609455 \( \frac{156243776670501}{125000} a + \frac{382718467985859}{125000} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( 837 a - 2078\) , \( -19198 a + 47067\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(837a-2078\right){x}-19198a+47067$
450.2-r1 450.2-r \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.112640830$ $4.060544959$ 4.481421404 \( \frac{134010805558487}{6} a - \frac{109419364548011}{2} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( 216 a - 569\) , \( -2737 a + 6583\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(216a-569\right){x}-2737a+6583$
450.2-r2 450.2-r \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.022528166$ $4.060544959$ 4.481421404 \( -\frac{14677}{864} a - \frac{56899}{288} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( -25 a - 62\) , \( 287 a + 721\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-25a-62\right){x}+287a+721$
450.2-s1 450.2-s \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.025784441$ $7.870570971$ 3.976761893 \( -\frac{264849}{4096} a - \frac{649089}{4096} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -7 a - 17\) , \( 30 a + 75\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-7a-17\right){x}+30a+75$
450.2-s2 450.2-s \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.077353325$ $7.870570971$ 3.976761893 \( \frac{50637231}{16} a - \frac{124030899}{16} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 258 a - 632\) , \( -3594 a + 8803\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(258a-632\right){x}-3594a+8803$
450.2-t1 450.2-t \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.212670611$ 2.128063865 \( 4119 a + \frac{17829}{2} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 128 a - 314\) , \( -2075 a + 5081\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(128a-314\right){x}-2075a+5081$
450.2-t2 450.2-t \(\Q(\sqrt{6}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.606335305$ 2.128063865 \( \frac{134610945}{2} a + 168166143 \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 2363 a - 5804\) , \( -100373 a + 245813\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(2363a-5804\right){x}-100373a+245813$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.