Learn more

Refine search


Results (16 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
441.1-a1 441.1-a \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.412632664$ $6.010951247$ 5.920505431 \( -\frac{2762656000}{63} a + \frac{966760000}{9} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( 13 a - 39\) , \( 40 a - 103\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(13a-39\right){x}+40a-103$
441.1-a2 441.1-a \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.206316332$ $12.02190249$ 5.920505431 \( \frac{31456000}{21} a + \frac{541624000}{147} \) \( \bigl[a\) , \( a\) , \( 1\) , \( 353 a - 861\) , \( 5203 a - 12743\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(353a-861\right){x}+5203a-12743$
441.1-b1 441.1-b \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.140022263$ $13.44459085$ 3.074178280 \( -\frac{4211}{21} a + \frac{2917}{7} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( -a + 3\) , \( a - 2\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a+3\right){x}+a-2$
441.1-c1 441.1-c \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.268934374$ $14.58796887$ 1.601642260 \( -\frac{2762656000}{63} a + \frac{966760000}{9} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -162 a - 399\) , \( -1477 a - 3618\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-162a-399\right){x}-1477a-3618$
441.1-c2 441.1-c \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.537868749$ $7.293984436$ 1.601642260 \( \frac{31456000}{21} a + \frac{541624000}{147} \) \( \bigl[a\) , \( a\) , \( 1\) , \( -2 a - 21\) , \( -27 a - 34\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-2a-21\right){x}-27a-34$
441.1-d1 441.1-d \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.767262781$ $8.450487594$ 2.646977654 \( -\frac{1728}{49} \) \( \bigl[a\) , \( 0\) , \( a + 1\) , \( a - 6\) , \( -11 a + 24\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-6\right){x}-11a+24$
441.1-d2 441.1-d \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.383631390$ $16.90097518$ 2.646977654 \( \frac{1259712}{7} \) \( \bigl[a\) , \( 0\) , \( a + 1\) , \( -14 a - 36\) , \( -50 a - 123\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-14a-36\right){x}-50a-123$
441.1-e1 441.1-e \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.183842358$ $8.340063935$ 2.503798229 \( \frac{4211}{21} a + \frac{2917}{7} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 8 a - 20\) , \( 98 a - 240\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(8a-20\right){x}+98a-240$
441.1-f1 441.1-f \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.140022263$ $13.44459085$ 3.074178280 \( \frac{4211}{21} a + \frac{2917}{7} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( a + 3\) , \( -a - 2\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(a+3\right){x}-a-2$
441.1-g1 441.1-g \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.767262781$ $8.450487594$ 2.646977654 \( -\frac{1728}{49} \) \( \bigl[a\) , \( 0\) , \( a + 1\) , \( -2 a - 6\) , \( 10 a + 24\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-2a-6\right){x}+10a+24$
441.1-g2 441.1-g \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.383631390$ $16.90097518$ 2.646977654 \( \frac{1259712}{7} \) \( \bigl[a\) , \( 0\) , \( a + 1\) , \( 13 a - 36\) , \( 49 a - 123\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(13a-36\right){x}+49a-123$
441.1-h1 441.1-h \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.537868749$ $7.293984436$ 1.601642260 \( -\frac{31456000}{21} a + \frac{541624000}{147} \) \( \bigl[a\) , \( -a\) , \( 1\) , \( a - 21\) , \( 27 a - 34\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(a-21\right){x}+27a-34$
441.1-h2 441.1-h \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.268934374$ $14.58796887$ 1.601642260 \( \frac{2762656000}{63} a + \frac{966760000}{9} \) \( \bigl[a\) , \( -a\) , \( a + 1\) , \( 161 a - 399\) , \( 1476 a - 3618\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(161a-399\right){x}+1476a-3618$
441.1-i1 441.1-i \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.206316332$ $12.02190249$ 5.920505431 \( -\frac{31456000}{21} a + \frac{541624000}{147} \) \( \bigl[a\) , \( -a\) , \( 1\) , \( -354 a - 861\) , \( -5203 a - 12743\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-354a-861\right){x}-5203a-12743$
441.1-i2 441.1-i \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.412632664$ $6.010951247$ 5.920505431 \( \frac{2762656000}{63} a + \frac{966760000}{9} \) \( \bigl[a\) , \( -a\) , \( a + 1\) , \( -14 a - 39\) , \( -41 a - 103\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-14a-39\right){x}-41a-103$
441.1-j1 441.1-j \(\Q(\sqrt{6}) \) \( 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.183842358$ $8.340063935$ 2.503798229 \( -\frac{4211}{21} a + \frac{2917}{7} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 1\) , \( -9 a - 20\) , \( -98 a - 240\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-9a-20\right){x}-98a-240$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.