Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
289.1-a1 289.1-a \(\Q(\sqrt{6}) \) \( 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.530583116$ $21.22287761$ 2.298540050 \( \frac{592704}{289} \) \( \bigl[a\) , \( 0\) , \( 1\) , \( 3 a - 8\) , \( 4 a - 10\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(3a-8\right){x}+4a-10$
289.1-a2 289.1-a \(\Q(\sqrt{6}) \) \( 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.061166233$ $21.22287761$ 2.298540050 \( \frac{21024576}{17} \) \( \bigl[a\) , \( 0\) , \( 1\) , \( -12 a - 28\) , \( 28 a + 68\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-12a-28\right){x}+28a+68$
289.1-b1 289.1-b \(\Q(\sqrt{6}) \) \( 17^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $4.990329480$ $2.393455763$ 1.219042955 \( -\frac{35937}{83521} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -1\) , \( -14\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-{x}-14$
289.1-b2 289.1-b \(\Q(\sqrt{6}) \) \( 17^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.247582370$ $38.29529222$ 1.219042955 \( \frac{35937}{17} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -1\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-{x}$
289.1-b3 289.1-b \(\Q(\sqrt{6}) \) \( 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.495164740$ $9.573823055$ 1.219042955 \( \frac{20346417}{289} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -6\) , \( -4\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-6{x}-4$
289.1-b4 289.1-b \(\Q(\sqrt{6}) \) \( 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.990329480$ $2.393455763$ 1.219042955 \( \frac{82483294977}{17} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -91\) , \( -310\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-91{x}-310$
289.1-c1 289.1-c \(\Q(\sqrt{6}) \) \( 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.530583116$ $21.22287761$ 2.298540050 \( \frac{592704}{289} \) \( \bigl[a\) , \( 0\) , \( 1\) , \( -4 a - 8\) , \( -4 a - 10\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-4a-8\right){x}-4a-10$
289.1-c2 289.1-c \(\Q(\sqrt{6}) \) \( 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.061166233$ $21.22287761$ 2.298540050 \( \frac{21024576}{17} \) \( \bigl[a\) , \( 0\) , \( 1\) , \( 11 a - 28\) , \( -28 a + 68\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(11a-28\right){x}-28a+68$
289.1-d1 289.1-d \(\Q(\sqrt{6}) \) \( 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.300533693$ $7.539083304$ 4.002805844 \( -\frac{35937}{83521} \) \( \bigl[a + 1\) , \( a - 1\) , \( a\) , \( 14 a - 32\) , \( -2766 a + 6777\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(14a-32\right){x}-2766a+6777$
289.1-d2 289.1-d \(\Q(\sqrt{6}) \) \( 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.300533693$ $30.15633321$ 4.002805844 \( \frac{35937}{17} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -13 a - 29\) , \( -38 a - 94\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-13a-29\right){x}-38a-94$
289.1-d3 289.1-d \(\Q(\sqrt{6}) \) \( 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.601067387$ $30.15633321$ 4.002805844 \( \frac{20346417}{289} \) \( \bigl[a + 1\) , \( a - 1\) , \( a\) , \( 114 a - 277\) , \( -1131 a + 2772\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(114a-277\right){x}-1131a+2772$
289.1-d4 289.1-d \(\Q(\sqrt{6}) \) \( 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.300533693$ $30.15633321$ 4.002805844 \( \frac{82483294977}{17} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -1813 a - 4439\) , \( 63142 a + 154666\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-1813a-4439\right){x}+63142a+154666$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.