Learn more

Refine search


Results (48 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
900.2-a1 900.2-a \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.796817047$ 2.782075760 \( \frac{581783614979}{56250} a - \frac{811953397262}{28125} \) \( \bigl[1\) , \( a\) , \( a + 1\) , \( 102 a + 144\) , \( 1630 a + 2843\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(102a+144\right){x}+1630a+2843$
900.2-b1 900.2-b \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.178434443$ $5.470445350$ 3.408095131 \( -\frac{1331}{15} a + \frac{9317}{30} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 5 a + 12\) , \( 53 a + 96\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(5a+12\right){x}+53a+96$
900.2-c1 900.2-c \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $16.38542470$ 3.575592808 \( -\frac{22199}{2} a - 18975 \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -3 a\) , \( -3\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}-3a{x}-3$
900.2-c2 900.2-c \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.277084940$ 3.575592808 \( \frac{2445311}{32} a - \frac{6820445}{32} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( 102 a - 285\) , \( -825 a + 2277\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(102a-285\right){x}-825a+2277$
900.2-d1 900.2-d \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.801386883$ 1.222625470 \( \frac{188573}{2500} a - \frac{282863}{2500} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( 3 a + 5\) , \( 19 a + 20\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(3a+5\right){x}+19a+20$
900.2-d2 900.2-d \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.801386883$ 1.222625470 \( -\frac{99421622443}{781250} a + \frac{143628843729}{390625} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( -27 a - 145\) , \( 385 a + 200\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-27a-145\right){x}+385a+200$
900.2-e1 900.2-e \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.246495566$ $7.706521872$ 3.316254618 \( \frac{167449}{216} a + \frac{1792795}{864} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -42 a + 117\) , \( -273 a + 762\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-42a+117\right){x}-273a+762$
900.2-e2 900.2-e \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.232477833$ $1.541304374$ 3.316254618 \( \frac{22471929002}{3} a + \frac{77349968995}{6} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 9828 a - 27543\) , \( -806493 a + 2250672\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(9828a-27543\right){x}-806493a+2250672$
900.2-f1 900.2-f \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.930793394$ 1.218694624 \( \frac{11482520593}{1572864} a + \frac{82381391095}{6291456} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -797 a + 2065\) , \( -173929 a + 486330\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-797a+2065\right){x}-173929a+486330$
900.2-f2 900.2-f \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.792380182$ 1.218694624 \( \frac{860527009}{1152} a - \frac{2298977375}{1152} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 1483 a - 4160\) , \( -45811 a + 127845\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(1483a-4160\right){x}-45811a+127845$
900.2-g1 900.2-g \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.332854019$ 1.163410368 \( \frac{4913}{1296} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( -18 a + 50\) , \( 1222 a - 3415\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-18a+50\right){x}+1222a-3415$
900.2-g2 900.2-g \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.332854019$ 1.163410368 \( \frac{838561807}{26244} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( 942 a - 2650\) , \( 24322 a - 67915\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(942a-2650\right){x}+24322a-67915$
900.2-h1 900.2-h \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.255067624$ 1.968384397 \( \frac{22892623}{13122} a - \frac{20459215}{6561} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -64 a - 118\) , \( -110 a - 199\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-64a-118\right){x}-110a-199$
900.2-h2 900.2-h \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.451013524$ 1.968384397 \( \frac{1073840073184957}{288} a + \frac{1923556673230885}{288} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 410 a - 1383\) , \( -508722 a + 1418527\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(410a-1383\right){x}-508722a+1418527$
900.2-i1 900.2-i \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.115482924$ 1.947346642 \( -\frac{1220111}{17496} a + \frac{6792367}{4374} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -55 a + 242\) , \( -44 a + 317\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-55a+242\right){x}-44a+317$
900.2-j1 900.2-j \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $10.42417122$ 1.516493768 \( \frac{729}{2} a + \frac{4185}{2} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -14 a - 25\) , \( 32 a + 57\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-14a-25\right){x}+32a+57$
900.2-j2 900.2-j \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.158241247$ 1.516493768 \( \frac{1970499}{2} a + \frac{14088045}{8} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -444 a - 800\) , \( -7620 a - 13653\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-444a-800\right){x}-7620a-13653$
900.2-k1 900.2-k \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.545882020$ $4.892064339$ 2.330994747 \( \frac{729}{2} a + \frac{4185}{2} \) \( \bigl[a + 1\) , \( 0\) , \( a\) , \( -10 a - 13\) , \( -25 a - 43\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-10a-13\right){x}-25a-43$
900.2-k2 900.2-k \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.181960673$ $4.892064339$ 2.330994747 \( \frac{1970499}{2} a + \frac{14088045}{8} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 33 a - 98\) , \( 241 a - 664\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(33a-98\right){x}+241a-664$
900.2-l1 900.2-l \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.121336919$ 1.957566215 \( \frac{25243791}{10240} a - \frac{95300211}{10240} \) \( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( -463 a - 838\) , \( 10749 a + 19224\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-463a-838\right){x}+10749a+19224$
900.2-m1 900.2-m \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.055987325$ $12.97809246$ 3.805416360 \( \frac{18571}{24} a - \frac{9845}{24} \) \( \bigl[1\) , \( a\) , \( a + 1\) , \( -3 a - 6\) , \( -5 a - 7\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-3a-6\right){x}-5a-7$
900.2-n1 900.2-n \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.342336949$ $6.470265765$ 3.866840298 \( \frac{276769}{54} a - \frac{821933}{54} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -22 a - 40\) , \( -130 a - 233\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-22a-40\right){x}-130a-233$
900.2-n2 900.2-n \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.068467389$ $6.470265765$ 3.866840298 \( -\frac{7019}{96} a - \frac{2183}{24} \) \( \bigl[a\) , \( a\) , \( a\) , \( -5 a - 10\) , \( 23 a + 40\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-5a-10\right){x}+23a+40$
900.2-o1 900.2-o \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.016073227$ $5.921771776$ 3.655592425 \( \frac{25243791}{10240} a - \frac{95300211}{10240} \) \( \bigl[1\) , \( a\) , \( a\) , \( -28 a - 68\) , \( 155 a + 322\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-28a-68\right){x}+155a+322$
900.2-p1 900.2-p \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.353005975$ 2.773159893 \( \frac{11482520593}{1572864} a + \frac{82381391095}{6291456} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( -833 a - 1340\) , \( -18677 a - 40710\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-833a-1340\right){x}-18677a-40710$
900.2-p2 900.2-p \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.059017927$ 2.773159893 \( \frac{860527009}{1152} a - \frac{2298977375}{1152} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( -38 a - 365\) , \( 1057 a - 15\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-38a-365\right){x}+1057a-15$
900.2-q1 900.2-q \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.278962030$ $0.758734791$ 4.064509272 \( \frac{25243791}{10240} a - \frac{95300211}{10240} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( 97 a - 275\) , \( 810 a - 2279\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(97a-275\right){x}+810a-2279$
900.2-r1 900.2-r \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $7.574862229$ 3.305940909 \( \frac{729}{2} a + \frac{4185}{2} \) \( \bigl[a\) , \( -a + 1\) , \( 1\) , \( -4 a + 7\) , \( -2 a + 4\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a+7\right){x}-2a+4$
900.2-r2 900.2-r \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $7.574862229$ 3.305940909 \( \frac{1970499}{2} a + \frac{14088045}{8} \) \( \bigl[a\) , \( -a + 1\) , \( 1\) , \( a - 93\) , \( -6 a + 334\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(a-93\right){x}-6a+334$
900.2-s1 900.2-s \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.335624228$ 1.165828404 \( \frac{25243791}{10240} a - \frac{95300211}{10240} \) \( \bigl[a + 1\) , \( 0\) , \( a\) , \( 41 a - 208\) , \( -538 a + 942\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(41a-208\right){x}-538a+942$
900.2-t1 900.2-t \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $6.159723357$ 2.688323670 \( \frac{22892623}{13122} a - \frac{20459215}{6561} \) \( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( 12 a - 48\) , \( -43 a + 121\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(12a-48\right){x}-43a+121$
900.2-t2 900.2-t \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.231944671$ 2.688323670 \( \frac{1073840073184957}{288} a + \frac{1923556673230885}{288} \) \( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( -1158 a - 2163\) , \( 38522 a + 47731\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1158a-2163\right){x}+38522a+47731$
900.2-u1 900.2-u \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.098929810$ $5.376934931$ 4.178831052 \( \frac{18571}{24} a - \frac{9845}{24} \) \( \bigl[a\) , \( a\) , \( a\) , \( 10 a - 25\) , \( 29 a - 80\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(10a-25\right){x}+29a-80$
900.2-v1 900.2-v \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.615398010$ 3.155778104 \( \frac{4913}{1296} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 4 a + 10\) , \( 39 a + 120\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(4a+10\right){x}+39a+120$
900.2-v2 900.2-v \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.615398010$ 3.155778104 \( \frac{838561807}{26244} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -56 a - 290\) , \( 339 a + 1620\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-56a-290\right){x}+339a+1620$
900.2-w1 900.2-w \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.900165376$ $4.651969904$ 3.655186534 \( \frac{167449}{216} a + \frac{1792795}{864} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -5 a + 2\) , \( -a - 4\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-5a+2\right){x}-a-4$
900.2-w2 900.2-w \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $4.500826884$ $0.930393980$ 3.655186534 \( \frac{22471929002}{3} a + \frac{77349968995}{6} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -125 a - 2188\) , \( 18779 a - 1924\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-125a-2188\right){x}+18779a-1924$
900.2-x1 900.2-x \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.937611500$ 0.818414414 \( -\frac{1220111}{17496} a + \frac{6792367}{4374} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 438 a + 802\) , \( -4221 a - 7549\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(438a+802\right){x}-4221a-7549$
900.2-y1 900.2-y \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.261978565$ $5.380255003$ 3.690967471 \( \frac{729}{2} a + \frac{4185}{2} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -29 a + 78\) , \( 62 a - 174\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-29a+78\right){x}+62a-174$
900.2-y2 900.2-y \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.785935695$ $5.380255003$ 3.690967471 \( \frac{1970499}{2} a + \frac{14088045}{8} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -26 a - 53\) , \( -217 a - 379\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-26a-53\right){x}-217a-379$
900.2-z1 900.2-z \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.205057020$ $4.686777276$ 3.355515844 \( \frac{276769}{54} a - \frac{821933}{54} \) \( \bigl[1\) , \( a\) , \( a\) , \( 2 a - 8\) , \( 3 a - 8\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(2a-8\right){x}+3a-8$
900.2-z2 900.2-z \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.041011404$ $4.686777276$ 3.355515844 \( -\frac{7019}{96} a - \frac{2183}{24} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( a + 7\) , \( -5 a + 21\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a+7\right){x}-5a+21$
900.2-ba1 900.2-ba \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $5.845682301$ 1.275632458 \( -\frac{22199}{2} a - 18975 \) \( \bigl[a\) , \( -1\) , \( a + 1\) , \( -7 a - 13\) , \( -15 a - 27\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-7a-13\right){x}-15a-27$
900.2-ba2 900.2-ba \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.169136460$ 1.275632458 \( \frac{2445311}{32} a - \frac{6820445}{32} \) \( \bigl[a\) , \( -1\) , \( a + 1\) , \( 38 a + 47\) , \( 540 a + 933\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(38a+47\right){x}+540a+933$
900.2-bb1 900.2-bb \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.258993524$ 2.844682764 \( \frac{581783614979}{56250} a - \frac{811953397262}{28125} \) \( \bigl[a\) , \( a\) , \( a\) , \( 205 a - 550\) , \( -2401 a + 6670\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(205a-550\right){x}-2401a+6670$
900.2-bc1 900.2-bc \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.167603399$ $4.791186998$ 2.803730596 \( -\frac{1331}{15} a + \frac{9317}{30} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -2 a + 7\) , \( -5 a + 12\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-2a+7\right){x}-5a+12$
900.2-bd1 900.2-bd \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.975952586$ 1.735247970 \( \frac{188573}{2500} a - \frac{282863}{2500} \) \( \bigl[a\) , \( -1\) , \( a + 1\) , \( 21 a - 63\) , \( -239 a + 663\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(21a-63\right){x}-239a+663$
900.2-bd2 900.2-bd \(\Q(\sqrt{21}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.975952586$ 1.735247970 \( -\frac{99421622443}{781250} a + \frac{143628843729}{390625} \) \( \bigl[a\) , \( -1\) , \( a + 1\) , \( 501 a - 1413\) , \( -9347 a + 26073\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(501a-1413\right){x}-9347a+26073$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.