Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
900.2-a1 |
900.2-a |
$1$ |
$1$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{9} \cdot 5^{11} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{4} \) |
$1$ |
$0.796817047$ |
2.782075760 |
\( \frac{581783614979}{56250} a - \frac{811953397262}{28125} \) |
\( \bigl[1\) , \( a\) , \( a + 1\) , \( 102 a + 144\) , \( 1630 a + 2843\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(102a+144\right){x}+1630a+2843$ |
900.2-b1 |
900.2-b |
$1$ |
$1$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{7} \cdot 5^{7} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{3} \) |
$0.178434443$ |
$5.470445350$ |
3.408095131 |
\( -\frac{1331}{15} a + \frac{9317}{30} \) |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 5 a + 12\) , \( 53 a + 96\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(5a+12\right){x}+53a+96$ |
900.2-c1 |
900.2-c |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.1 |
$1$ |
\( 1 \) |
$1$ |
$16.38542470$ |
3.575592808 |
\( -\frac{22199}{2} a - 18975 \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -3 a\) , \( -3\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}-3a{x}-3$ |
900.2-c2 |
900.2-c |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{6} \cdot 5^{10} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.2 |
$1$ |
\( 5 \) |
$1$ |
$3.277084940$ |
3.575592808 |
\( \frac{2445311}{32} a - \frac{6820445}{32} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( 102 a - 285\) , \( -825 a + 2277\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(102a-285\right){x}-825a+2277$ |
900.2-d1 |
900.2-d |
$2$ |
$2$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{10} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$2.801386883$ |
1.222625470 |
\( \frac{188573}{2500} a - \frac{282863}{2500} \) |
\( \bigl[1\) , \( -a + 1\) , \( a\) , \( 3 a + 5\) , \( 19 a + 20\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(3a+5\right){x}+19a+20$ |
900.2-d2 |
900.2-d |
$2$ |
$2$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 5^{14} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$2.801386883$ |
1.222625470 |
\( -\frac{99421622443}{781250} a + \frac{143628843729}{390625} \) |
\( \bigl[1\) , \( -a + 1\) , \( a\) , \( -27 a - 145\) , \( 385 a + 200\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-27a-145\right){x}+385a+200$ |
900.2-e1 |
900.2-e |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{10} \cdot 3^{11} \cdot 5^{2} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.1 |
$1$ |
\( 2^{2} \) |
$0.246495566$ |
$7.706521872$ |
3.316254618 |
\( \frac{167449}{216} a + \frac{1792795}{864} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -42 a + 117\) , \( -273 a + 762\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-42a+117\right){x}-273a+762$ |
900.2-e2 |
900.2-e |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{2} \cdot 3^{7} \cdot 5^{10} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.2 |
$1$ |
\( 2^{2} \) |
$1.232477833$ |
$1.541304374$ |
3.316254618 |
\( \frac{22471929002}{3} a + \frac{77349968995}{6} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 9828 a - 27543\) , \( -806493 a + 2250672\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(9828a-27543\right){x}-806493a+2250672$ |
900.2-f1 |
900.2-f |
$2$ |
$3$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{42} \cdot 3^{7} \cdot 5^{8} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$0.930793394$ |
1.218694624 |
\( \frac{11482520593}{1572864} a + \frac{82381391095}{6291456} \) |
\( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -797 a + 2065\) , \( -173929 a + 486330\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-797a+2065\right){x}-173929a+486330$ |
900.2-f2 |
900.2-f |
$2$ |
$3$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{14} \cdot 3^{9} \cdot 5^{8} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B |
$1$ |
\( 2 \) |
$1$ |
$2.792380182$ |
1.218694624 |
\( \frac{860527009}{1152} a - \frac{2298977375}{1152} \) |
\( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 1483 a - 4160\) , \( -45811 a + 127845\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(1483a-4160\right){x}-45811a+127845$ |
900.2-g1 |
900.2-g |
$2$ |
$2$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{14} \cdot 5^{6} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$1.332854019$ |
1.163410368 |
\( \frac{4913}{1296} \) |
\( \bigl[1\) , \( -a + 1\) , \( a\) , \( -18 a + 50\) , \( 1222 a - 3415\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-18a+50\right){x}+1222a-3415$ |
900.2-g2 |
900.2-g |
$2$ |
$2$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{22} \cdot 5^{6} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$1.332854019$ |
1.163410368 |
\( \frac{838561807}{26244} \) |
\( \bigl[1\) , \( -a + 1\) , \( a\) , \( 942 a - 2650\) , \( 24322 a - 67915\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(942a-2650\right){x}+24322a-67915$ |
900.2-h1 |
900.2-h |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{2} \cdot 3^{21} \cdot 5^{2} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.1 |
$1$ |
\( 2^{2} \) |
$1$ |
$2.255067624$ |
1.968384397 |
\( \frac{22892623}{13122} a - \frac{20459215}{6561} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -64 a - 118\) , \( -110 a - 199\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-64a-118\right){x}-110a-199$ |
900.2-h2 |
900.2-h |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{10} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.2 |
$1$ |
\( 2^{2} \cdot 5 \) |
$1$ |
$0.451013524$ |
1.968384397 |
\( \frac{1073840073184957}{288} a + \frac{1923556673230885}{288} \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( 410 a - 1383\) , \( -508722 a + 1418527\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(410a-1383\right){x}-508722a+1418527$ |
900.2-i1 |
900.2-i |
$1$ |
$1$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{6} \cdot 3^{19} \cdot 5^{9} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{3} \) |
$1$ |
$1.115482924$ |
1.947346642 |
\( -\frac{1220111}{17496} a + \frac{6792367}{4374} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -55 a + 242\) , \( -44 a + 317\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-55a+242\right){x}-44a+317$ |
900.2-j1 |
900.2-j |
$2$ |
$3$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{8} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$10.42417122$ |
1.516493768 |
\( \frac{729}{2} a + \frac{4185}{2} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -14 a - 25\) , \( 32 a + 57\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-14a-25\right){x}+32a+57$ |
900.2-j2 |
900.2-j |
$2$ |
$3$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{6} \cdot 3^{9} \cdot 5^{8} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.2 |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$1.158241247$ |
1.516493768 |
\( \frac{1970499}{2} a + \frac{14088045}{8} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -444 a - 800\) , \( -7620 a - 13653\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-444a-800\right){x}-7620a-13653$ |
900.2-k1 |
900.2-k |
$2$ |
$3$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{8} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B |
$1$ |
\( 2 \) |
$0.545882020$ |
$4.892064339$ |
2.330994747 |
\( \frac{729}{2} a + \frac{4185}{2} \) |
\( \bigl[a + 1\) , \( 0\) , \( a\) , \( -10 a - 13\) , \( -25 a - 43\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-10a-13\right){x}-25a-43$ |
900.2-k2 |
900.2-k |
$2$ |
$3$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{8} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B |
$1$ |
\( 2 \cdot 3 \) |
$0.181960673$ |
$4.892064339$ |
2.330994747 |
\( \frac{1970499}{2} a + \frac{14088045}{8} \) |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 33 a - 98\) , \( 241 a - 664\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(33a-98\right){x}+241a-664$ |
900.2-l1 |
900.2-l |
$1$ |
$1$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{22} \cdot 3^{9} \cdot 5^{7} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{3} \) |
$1$ |
$1.121336919$ |
1.957566215 |
\( \frac{25243791}{10240} a - \frac{95300211}{10240} \) |
\( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( -463 a - 838\) , \( 10749 a + 19224\bigr] \) |
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-463a-838\right){x}+10749a+19224$ |
900.2-m1 |
900.2-m |
$1$ |
$1$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{6} \cdot 3^{7} \cdot 5^{4} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \cdot 3 \) |
$0.055987325$ |
$12.97809246$ |
3.805416360 |
\( \frac{18571}{24} a - \frac{9845}{24} \) |
\( \bigl[1\) , \( a\) , \( a + 1\) , \( -3 a - 6\) , \( -5 a - 7\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-3a-6\right){x}-5a-7$ |
900.2-n1 |
900.2-n |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{11} \cdot 5^{3} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.1 |
$1$ |
\( 2^{2} \) |
$0.342336949$ |
$6.470265765$ |
3.866840298 |
\( \frac{276769}{54} a - \frac{821933}{54} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -22 a - 40\) , \( -130 a - 233\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-22a-40\right){x}-130a-233$ |
900.2-n2 |
900.2-n |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{7} \cdot 5^{3} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.2 |
$1$ |
\( 2^{2} \cdot 5 \) |
$0.068467389$ |
$6.470265765$ |
3.866840298 |
\( -\frac{7019}{96} a - \frac{2183}{24} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( -5 a - 10\) , \( 23 a + 40\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-5a-10\right){x}+23a+40$ |
900.2-o1 |
900.2-o |
$1$ |
$1$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{22} \cdot 3^{3} \cdot 5^{7} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{3} \cdot 11 \) |
$0.016073227$ |
$5.921771776$ |
3.655592425 |
\( \frac{25243791}{10240} a - \frac{95300211}{10240} \) |
\( \bigl[1\) , \( a\) , \( a\) , \( -28 a - 68\) , \( 155 a + 322\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-28a-68\right){x}+155a+322$ |
900.2-p1 |
900.2-p |
$2$ |
$3$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{42} \cdot 3^{7} \cdot 5^{8} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B |
$9$ |
\( 2^{2} \) |
$1$ |
$0.353005975$ |
2.773159893 |
\( \frac{11482520593}{1572864} a + \frac{82381391095}{6291456} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( -833 a - 1340\) , \( -18677 a - 40710\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-833a-1340\right){x}-18677a-40710$ |
900.2-p2 |
900.2-p |
$2$ |
$3$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{14} \cdot 3^{9} \cdot 5^{8} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B |
$1$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$1.059017927$ |
2.773159893 |
\( \frac{860527009}{1152} a - \frac{2298977375}{1152} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( -38 a - 365\) , \( 1057 a - 15\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-38a-365\right){x}+1057a-15$ |
900.2-q1 |
900.2-q |
$1$ |
$1$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{22} \cdot 3^{3} \cdot 5^{7} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \cdot 11 \) |
$0.278962030$ |
$0.758734791$ |
4.064509272 |
\( \frac{25243791}{10240} a - \frac{95300211}{10240} \) |
\( \bigl[a\) , \( a\) , \( a + 1\) , \( 97 a - 275\) , \( 810 a - 2279\bigr] \) |
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(97a-275\right){x}+810a-2279$ |
900.2-r1 |
900.2-r |
$2$ |
$3$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{8} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.2 |
$1$ |
\( 2 \) |
$1$ |
$7.574862229$ |
3.305940909 |
\( \frac{729}{2} a + \frac{4185}{2} \) |
\( \bigl[a\) , \( -a + 1\) , \( 1\) , \( -4 a + 7\) , \( -2 a + 4\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a+7\right){x}-2a+4$ |
900.2-r2 |
900.2-r |
$2$ |
$3$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{6} \cdot 3^{9} \cdot 5^{8} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$7.574862229$ |
3.305940909 |
\( \frac{1970499}{2} a + \frac{14088045}{8} \) |
\( \bigl[a\) , \( -a + 1\) , \( 1\) , \( a - 93\) , \( -6 a + 334\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(a-93\right){x}-6a+334$ |
900.2-s1 |
900.2-s |
$1$ |
$1$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{22} \cdot 3^{9} \cdot 5^{7} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$1.335624228$ |
1.165828404 |
\( \frac{25243791}{10240} a - \frac{95300211}{10240} \) |
\( \bigl[a + 1\) , \( 0\) , \( a\) , \( 41 a - 208\) , \( -538 a + 942\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(41a-208\right){x}-538a+942$ |
900.2-t1 |
900.2-t |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{2} \cdot 3^{21} \cdot 5^{2} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.1 |
$1$ |
\( 2 \) |
$1$ |
$6.159723357$ |
2.688323670 |
\( \frac{22892623}{13122} a - \frac{20459215}{6561} \) |
\( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( 12 a - 48\) , \( -43 a + 121\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(12a-48\right){x}-43a+121$ |
900.2-t2 |
900.2-t |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{10} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.2 |
$1$ |
\( 2 \cdot 5 \) |
$1$ |
$1.231944671$ |
2.688323670 |
\( \frac{1073840073184957}{288} a + \frac{1923556673230885}{288} \) |
\( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( -1158 a - 2163\) , \( 38522 a + 47731\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1158a-2163\right){x}+38522a+47731$ |
900.2-u1 |
900.2-u |
$1$ |
$1$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{6} \cdot 3^{7} \cdot 5^{4} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \cdot 3^{2} \) |
$0.098929810$ |
$5.376934931$ |
4.178831052 |
\( \frac{18571}{24} a - \frac{9845}{24} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( 10 a - 25\) , \( 29 a - 80\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(10a-25\right){x}+29a-80$ |
900.2-v1 |
900.2-v |
$2$ |
$2$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{14} \cdot 5^{6} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$3.615398010$ |
3.155778104 |
\( \frac{4913}{1296} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 4 a + 10\) , \( 39 a + 120\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(4a+10\right){x}+39a+120$ |
900.2-v2 |
900.2-v |
$2$ |
$2$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{22} \cdot 5^{6} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$3.615398010$ |
3.155778104 |
\( \frac{838561807}{26244} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -56 a - 290\) , \( 339 a + 1620\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-56a-290\right){x}+339a+1620$ |
900.2-w1 |
900.2-w |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{10} \cdot 3^{11} \cdot 5^{2} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.1 |
$1$ |
\( 2 \) |
$0.900165376$ |
$4.651969904$ |
3.655186534 |
\( \frac{167449}{216} a + \frac{1792795}{864} \) |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -5 a + 2\) , \( -a - 4\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-5a+2\right){x}-a-4$ |
900.2-w2 |
900.2-w |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{2} \cdot 3^{7} \cdot 5^{10} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.2 |
$1$ |
\( 2 \) |
$4.500826884$ |
$0.930393980$ |
3.655186534 |
\( \frac{22471929002}{3} a + \frac{77349968995}{6} \) |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -125 a - 2188\) , \( 18779 a - 1924\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-125a-2188\right){x}+18779a-1924$ |
900.2-x1 |
900.2-x |
$1$ |
$1$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{6} \cdot 3^{19} \cdot 5^{9} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$0.937611500$ |
0.818414414 |
\( -\frac{1220111}{17496} a + \frac{6792367}{4374} \) |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 438 a + 802\) , \( -4221 a - 7549\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(438a+802\right){x}-4221a-7549$ |
900.2-y1 |
900.2-y |
$2$ |
$3$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{8} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B |
$1$ |
\( 2 \cdot 3 \) |
$0.261978565$ |
$5.380255003$ |
3.690967471 |
\( \frac{729}{2} a + \frac{4185}{2} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( -29 a + 78\) , \( 62 a - 174\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-29a+78\right){x}+62a-174$ |
900.2-y2 |
900.2-y |
$2$ |
$3$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{8} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B |
$1$ |
\( 2 \) |
$0.785935695$ |
$5.380255003$ |
3.690967471 |
\( \frac{1970499}{2} a + \frac{14088045}{8} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -26 a - 53\) , \( -217 a - 379\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-26a-53\right){x}-217a-379$ |
900.2-z1 |
900.2-z |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{11} \cdot 5^{3} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.1 |
$1$ |
\( 2^{3} \) |
$0.205057020$ |
$4.686777276$ |
3.355515844 |
\( \frac{276769}{54} a - \frac{821933}{54} \) |
\( \bigl[1\) , \( a\) , \( a\) , \( 2 a - 8\) , \( 3 a - 8\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(2a-8\right){x}+3a-8$ |
900.2-z2 |
900.2-z |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{7} \cdot 5^{3} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.2 |
$1$ |
\( 2^{3} \cdot 5 \) |
$0.041011404$ |
$4.686777276$ |
3.355515844 |
\( -\frac{7019}{96} a - \frac{2183}{24} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( a + 7\) , \( -5 a + 21\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a+7\right){x}-5a+21$ |
900.2-ba1 |
900.2-ba |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.1 |
$1$ |
\( 1 \) |
$1$ |
$5.845682301$ |
1.275632458 |
\( -\frac{22199}{2} a - 18975 \) |
\( \bigl[a\) , \( -1\) , \( a + 1\) , \( -7 a - 13\) , \( -15 a - 27\bigr] \) |
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-7a-13\right){x}-15a-27$ |
900.2-ba2 |
900.2-ba |
$2$ |
$5$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{6} \cdot 5^{10} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.2 |
$1$ |
\( 5 \) |
$1$ |
$1.169136460$ |
1.275632458 |
\( \frac{2445311}{32} a - \frac{6820445}{32} \) |
\( \bigl[a\) , \( -1\) , \( a + 1\) , \( 38 a + 47\) , \( 540 a + 933\bigr] \) |
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(38a+47\right){x}+540a+933$ |
900.2-bb1 |
900.2-bb |
$1$ |
$1$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{9} \cdot 5^{11} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$3.258993524$ |
2.844682764 |
\( \frac{581783614979}{56250} a - \frac{811953397262}{28125} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( 205 a - 550\) , \( -2401 a + 6670\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(205a-550\right){x}-2401a+6670$ |
900.2-bc1 |
900.2-bc |
$1$ |
$1$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{7} \cdot 5^{7} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{3} \) |
$0.167603399$ |
$4.791186998$ |
2.803730596 |
\( -\frac{1331}{15} a + \frac{9317}{30} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -2 a + 7\) , \( -5 a + 12\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-2a+7\right){x}-5a+12$ |
900.2-bd1 |
900.2-bd |
$2$ |
$2$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{10} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$3.975952586$ |
1.735247970 |
\( \frac{188573}{2500} a - \frac{282863}{2500} \) |
\( \bigl[a\) , \( -1\) , \( a + 1\) , \( 21 a - 63\) , \( -239 a + 663\bigr] \) |
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(21a-63\right){x}-239a+663$ |
900.2-bd2 |
900.2-bd |
$2$ |
$2$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
900.2 |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 5^{14} \) |
$2.24289$ |
$(-a+2), (-a), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$3.975952586$ |
1.735247970 |
\( -\frac{99421622443}{781250} a + \frac{143628843729}{390625} \) |
\( \bigl[a\) , \( -1\) , \( a + 1\) , \( 501 a - 1413\) , \( -9347 a + 26073\bigr] \) |
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(501a-1413\right){x}-9347a+26073$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.