| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 847.1-a1 |
847.1-a |
$2$ |
$2$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
847.1 |
\( 7 \cdot 11^{2} \) |
\( 7^{6} \cdot 11^{4} \) |
$2.20912$ |
$(a+3), (11)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.480301811$ |
$3.210187340$ |
2.073962963 |
\( \frac{4657463}{41503} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( a\) , \( 18 a + 34\) , \( -195 a - 351\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(18a+34\right){x}-195a-351$ |
| 847.1-a2 |
847.1-a |
$2$ |
$2$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
847.1 |
\( 7 \cdot 11^{2} \) |
\( 7^{12} \cdot 11^{2} \) |
$2.20912$ |
$(a+3), (11)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$2.960603622$ |
$3.210187340$ |
2.073962963 |
\( \frac{15124197817}{1294139} \) |
\( \bigl[a\) , \( a + 1\) , \( 0\) , \( 260 a - 717\) , \( 3155 a - 8805\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(260a-717\right){x}+3155a-8805$ |
| 847.1-b1 |
847.1-b |
$1$ |
$1$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
847.1 |
\( 7 \cdot 11^{2} \) |
\( 7^{4} \cdot 11^{2} \) |
$2.20912$ |
$(a+3), (11)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
|
|
$1$ |
\( 2 \) |
$0.098027979$ |
$10.23860076$ |
0.876074426 |
\( \frac{884736}{539} \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 2\) , \( 0\bigr] \) |
${y}^2+{y}={x}^{3}+2{x}$ |
| 847.1-c1 |
847.1-c |
$3$ |
$9$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
847.1 |
\( 7 \cdot 11^{2} \) |
\( 7^{4} \cdot 11^{2} \) |
$2.20912$ |
$(a+3), (11)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$3$ |
3B.1.1 |
$1$ |
\( 2^{2} \) |
$1$ |
$21.59210152$ |
2.094125706 |
\( -\frac{78843215872}{539} \) |
\( \bigl[0\) , \( 1\) , \( 1\) , \( -89\) , \( 295\bigr] \) |
${y}^2+{y}={x}^{3}+{x}^{2}-89{x}+295$ |
| 847.1-c2 |
847.1-c |
$3$ |
$9$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
847.1 |
\( 7 \cdot 11^{2} \) |
\( 7^{12} \cdot 11^{6} \) |
$2.20912$ |
$(a+3), (11)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$3$ |
3Cs.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$2.399122391$ |
2.094125706 |
\( -\frac{13278380032}{156590819} \) |
\( \bigl[0\) , \( 1\) , \( 1\) , \( -49\) , \( 600\bigr] \) |
${y}^2+{y}={x}^{3}+{x}^{2}-49{x}+600$ |
| 847.1-c3 |
847.1-c |
$3$ |
$9$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
847.1 |
\( 7 \cdot 11^{2} \) |
\( 7^{4} \cdot 11^{18} \) |
$2.20912$ |
$(a+3), (11)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$3$ |
3B.1.2 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$0.266569154$ |
2.094125706 |
\( \frac{9463555063808}{115539436859} \) |
\( \bigl[0\) , \( 1\) , \( 1\) , \( 441\) , \( -15815\bigr] \) |
${y}^2+{y}={x}^{3}+{x}^{2}+441{x}-15815$ |
| 847.1-d1 |
847.1-d |
$3$ |
$9$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
847.1 |
\( 7 \cdot 11^{2} \) |
\( 7^{4} \cdot 11^{2} \) |
$2.20912$ |
$(a+3), (11)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$3$ |
3B.1.2 |
$1$ |
\( 2^{2} \) |
$1$ |
$0.602881548$ |
0.526238158 |
\( -\frac{78843215872}{539} \) |
\( \bigl[0\) , \( a\) , \( 1\) , \( 447 a - 1249\) , \( 7532 a - 21030\bigr] \) |
${y}^2+{y}={x}^{3}+a{x}^{2}+\left(447a-1249\right){x}+7532a-21030$ |
| 847.1-d2 |
847.1-d |
$3$ |
$9$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
847.1 |
\( 7 \cdot 11^{2} \) |
\( 7^{12} \cdot 11^{6} \) |
$2.20912$ |
$(a+3), (11)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$3$ |
3Cs.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$0.602881548$ |
0.526238158 |
\( -\frac{13278380032}{156590819} \) |
\( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -247 a - 442\) , \( -14652 a - 26253\bigr] \) |
${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-247a-442\right){x}-14652a-26253$ |
| 847.1-d3 |
847.1-d |
$3$ |
$9$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
847.1 |
\( 7 \cdot 11^{2} \) |
\( 7^{4} \cdot 11^{18} \) |
$2.20912$ |
$(a+3), (11)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$3$ |
3B.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$0.602881548$ |
0.526238158 |
\( \frac{9463555063808}{115539436859} \) |
\( \bigl[0\) , \( a\) , \( 1\) , \( -2203 a + 6171\) , \( -381758 a + 1065760\bigr] \) |
${y}^2+{y}={x}^{3}+a{x}^{2}+\left(-2203a+6171\right){x}-381758a+1065760$ |
| 847.1-e1 |
847.1-e |
$2$ |
$2$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
847.1 |
\( 7 \cdot 11^{2} \) |
\( 7^{6} \cdot 11^{4} \) |
$2.20912$ |
$(a+3), (11)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.833846915$ |
$7.031061357$ |
2.558748273 |
\( \frac{4657463}{41503} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( 4\) , \( 11\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}+4{x}+11$ |
| 847.1-e2 |
847.1-e |
$2$ |
$2$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
847.1 |
\( 7 \cdot 11^{2} \) |
\( 7^{12} \cdot 11^{2} \) |
$2.20912$ |
$(a+3), (11)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.667693830$ |
$7.031061357$ |
2.558748273 |
\( \frac{15124197817}{1294139} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( -51\) , \( 110\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}-51{x}+110$ |
| 847.1-f1 |
847.1-f |
$1$ |
$1$ |
\(\Q(\sqrt{21}) \) |
$2$ |
$[2, 0]$ |
847.1 |
\( 7 \cdot 11^{2} \) |
\( 7^{4} \cdot 11^{2} \) |
$2.20912$ |
$(a+3), (11)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
|
|
$1$ |
\( 2 \) |
$0.563972113$ |
$9.086092621$ |
4.472858235 |
\( \frac{884736}{539} \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 10 a + 18\) , \( -6 a - 11\bigr] \) |
${y}^2+{y}={x}^{3}+\left(10a+18\right){x}-6a-11$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.