Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1296.1-a1 1296.1-a \(\Q(\sqrt{21}) \) \( 2^{4} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.364059351$ 3.892768911 \( -5646360960 a - 10114260048 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -765 a - 1386\) , \( -17544 a - 31458\bigr] \) ${y}^2={x}^{3}+\left(-765a-1386\right){x}-17544a-31458$
1296.1-a2 1296.1-a \(\Q(\sqrt{21}) \) \( 2^{4} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.364059351$ 3.892768911 \( 5646360960 a - 15760621008 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 765 a - 2151\) , \( 17544 a - 49002\bigr] \) ${y}^2={x}^{3}+\left(765a-2151\right){x}+17544a-49002$
1296.1-b1 1296.1-b \(\Q(\sqrt{21}) \) \( 2^{4} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.604161811$ 1.050170418 \( -5646360960 a - 10114260048 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -48 a - 111\) , \( -336 a - 538\bigr] \) ${y}^2={x}^{3}+\left(-48a-111\right){x}-336a-538$
1296.1-b2 1296.1-b \(\Q(\sqrt{21}) \) \( 2^{4} \cdot 3^{4} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $4.812485434$ 1.050170418 \( 5646360960 a - 15760621008 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -123 a - 231\) , \( -1536 a - 2738\bigr] \) ${y}^2={x}^{3}+\left(-123a-231\right){x}-1536a-2738$
1296.1-c1 1296.1-c \(\Q(\sqrt{21}) \) \( 2^{4} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $-3$ $N(\mathrm{U}(1))$ $1$ $3.715723863$ 0.810837422 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 48 a + 84\bigr] \) ${y}^2={x}^{3}+48a+84$
1296.1-c2 1296.1-c \(\Q(\sqrt{21}) \) \( 2^{4} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $-3$ $N(\mathrm{U}(1))$ $1$ $3.715723863$ 0.810837422 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -48 a + 132\bigr] \) ${y}^2={x}^{3}-48a+132$
1296.1-d1 1296.1-d \(\Q(\sqrt{21}) \) \( 2^{4} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $-3$ $N(\mathrm{U}(1))$ $1$ $3.715723863$ 2.432512266 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -96 a - 172\bigr] \) ${y}^2={x}^{3}-96a-172$
1296.1-d2 1296.1-d \(\Q(\sqrt{21}) \) \( 2^{4} \cdot 3^{4} \) 0 $\Z/3\Z$ $-3$ $N(\mathrm{U}(1))$ $1$ $11.14717159$ 2.432512266 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 4\bigr] \) ${y}^2={x}^{3}+4$
1296.1-e1 1296.1-e \(\Q(\sqrt{21}) \) \( 2^{4} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $7.068449444$ 1.542462125 \( -5646360960 a - 10114260048 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 45 a - 279\) , \( -600 a + 2406\bigr] \) ${y}^2={x}^{3}+\left(45a-279\right){x}-600a+2406$
1296.1-e2 1296.1-e \(\Q(\sqrt{21}) \) \( 2^{4} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $7.068449444$ 1.542462125 \( 5646360960 a - 15760621008 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -45 a - 234\) , \( 600 a + 1806\bigr] \) ${y}^2={x}^{3}+\left(-45a-234\right){x}+600a+1806$
1296.1-f1 1296.1-f \(\Q(\sqrt{21}) \) \( 2^{4} \cdot 3^{4} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $4.812485434$ 1.050170418 \( -5646360960 a - 10114260048 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 123 a - 354\) , \( 1536 a - 4274\bigr] \) ${y}^2={x}^{3}+\left(123a-354\right){x}+1536a-4274$
1296.1-f2 1296.1-f \(\Q(\sqrt{21}) \) \( 2^{4} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.604161811$ 1.050170418 \( 5646360960 a - 15760621008 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 48 a - 159\) , \( 336 a - 874\bigr] \) ${y}^2={x}^{3}+\left(48a-159\right){x}+336a-874$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.