Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
729.1-a1 |
729.1-a |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{20} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B |
$1$ |
\( 1 \) |
$1$ |
$6.546120139$ |
1.815567063 |
\( -13515 a + 30222 \) |
\( \bigl[a\) , \( -a\) , \( a + 1\) , \( -13 a - 21\) , \( 65 a + 78\bigr] \) |
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-13a-21\right){x}+65a+78$ |
729.1-a2 |
729.1-a |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{20} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B |
$1$ |
\( 1 \) |
$1$ |
$6.546120139$ |
1.815567063 |
\( -16755 a + 39237 \) |
\( \bigl[a + 1\) , \( -1\) , \( a\) , \( 38 a + 48\) , \( -201 a - 261\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(38a+48\right){x}-201a-261$ |
729.1-b1 |
729.1-b |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{14} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$1$ |
$4.860164952$ |
1.347967226 |
\( -13515 a + 30222 \) |
\( \bigl[a + 1\) , \( -1\) , \( 1\) , \( -2 a - 5\) , \( -6 a - 9\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(-2a-5\right){x}-6a-9$ |
729.1-b2 |
729.1-b |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{14} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3 \) |
$1$ |
$14.58049485$ |
1.347967226 |
\( -16755 a + 39237 \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 7 a + 9\) , \( 16 a + 21\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(7a+9\right){x}+16a+21$ |
729.1-c1 |
729.1-c |
$4$ |
$27$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( 3^{16} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-27$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 3 \) |
$1$ |
$3.121012474$ |
2.596839347 |
\( -12288000 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 30 a - 120\) , \( 253 a - 443\bigr] \) |
${y}^2+{y}={x}^{3}+\left(30a-120\right){x}+253a-443$ |
729.1-c2 |
729.1-c |
$4$ |
$27$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( 3^{16} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-27$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 3 \) |
$1$ |
$3.121012474$ |
2.596839347 |
\( -12288000 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( -30 a - 90\) , \( -253 a - 190\bigr] \) |
${y}^2+{y}={x}^{3}+\left(-30a-90\right){x}-253a-190$ |
729.1-c3 |
729.1-c |
$4$ |
$27$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( 3^{12} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3Cs |
$1$ |
\( 1 \) |
$1$ |
$9.363037422$ |
2.596839347 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( a - 2\bigr] \) |
${y}^2+{y}={x}^{3}+a-2$ |
729.1-c4 |
729.1-c |
$4$ |
$27$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( 3^{12} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3Cs |
$1$ |
\( 1 \) |
$1$ |
$9.363037422$ |
2.596839347 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -a - 1\bigr] \) |
${y}^2+{y}={x}^{3}-a-1$ |
729.1-d1 |
729.1-d |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{8} \) |
$1.67414$ |
$(-a), (-a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B |
$1$ |
\( 1 \) |
$0.354151165$ |
$14.41546786$ |
2.831885807 |
\( 13515 a + 16707 \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -5\) , \( a - 5\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}-5{x}+a-5$ |
729.1-d2 |
729.1-d |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{8} \) |
$1.67414$ |
$(-a), (-a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B |
$1$ |
\( 3 \) |
$0.118050388$ |
$14.41546786$ |
2.831885807 |
\( 16755 a + 22482 \) |
\( \bigl[a\) , \( -a\) , \( a\) , \( -5 a + 9\) , \( -11 a + 24\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-5a+9\right){x}-11a+24$ |
729.1-e1 |
729.1-e |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{14} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$1$ |
$4.860164952$ |
1.347967226 |
\( 13515 a + 16707 \) |
\( \bigl[a\) , \( -a\) , \( 1\) , \( a - 6\) , \( 6 a - 15\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(a-6\right){x}+6a-15$ |
729.1-e2 |
729.1-e |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{14} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3 \) |
$1$ |
$14.58049485$ |
1.347967226 |
\( 16755 a + 22482 \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( -8 a + 16\) , \( -17 a + 37\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-8a+16\right){x}-17a+37$ |
729.1-f1 |
729.1-f |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{20} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B |
$1$ |
\( 1 \) |
$1$ |
$6.546120139$ |
1.815567063 |
\( 13515 a + 16707 \) |
\( \bigl[a + 1\) , \( -1\) , \( a\) , \( 11 a - 33\) , \( -66 a + 144\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(11a-33\right){x}-66a+144$ |
729.1-f2 |
729.1-f |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{20} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B |
$1$ |
\( 1 \) |
$1$ |
$6.546120139$ |
1.815567063 |
\( 16755 a + 22482 \) |
\( \bigl[a\) , \( -a\) , \( a + 1\) , \( -40 a + 87\) , \( 200 a - 462\bigr] \) |
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-40a+87\right){x}+200a-462$ |
729.1-g1 |
729.1-g |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{14} \) |
$1.67414$ |
$(-a), (-a+1)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3^{2} \) |
$0.227641124$ |
$19.41608679$ |
2.451719308 |
\( 13515 a + 16707 \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 7 a - 18\) , \( -29 a + 66\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(7a-18\right){x}-29a+66$ |
729.1-g2 |
729.1-g |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{14} \) |
$1.67414$ |
$(-a), (-a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$0.682923374$ |
$6.472028930$ |
2.451719308 |
\( 16755 a + 22482 \) |
\( \bigl[a\) , \( -a\) , \( 1\) , \( -11 a - 12\) , \( -20 a - 26\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-11a-12\right){x}-20a-26$ |
729.1-h1 |
729.1-h |
$4$ |
$27$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( 3^{10} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-27$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 1 \) |
$1$ |
$28.08911226$ |
0.865613115 |
\( -12288000 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( -30\) , \( 63\bigr] \) |
${y}^2+{y}={x}^{3}-30{x}+63$ |
729.1-h2 |
729.1-h |
$4$ |
$27$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( 3^{22} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-27$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$3$ |
3B.1.2 |
$9$ |
\( 1 \) |
$1$ |
$0.346779163$ |
0.865613115 |
\( -12288000 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( -270\) , \( -1708\bigr] \) |
${y}^2+{y}={x}^{3}-270{x}-1708$ |
729.1-h3 |
729.1-h |
$4$ |
$27$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( 3^{6} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$3$ |
3Cs.1.1 |
$1$ |
\( 1 \) |
$1$ |
$28.08911226$ |
0.865613115 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 0\bigr] \) |
${y}^2+{y}={x}^{3}$ |
729.1-h4 |
729.1-h |
$4$ |
$27$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( 3^{18} \) |
$1.67414$ |
$(-a), (-a+1)$ |
0 |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$3$ |
3Cs.1.1 |
$1$ |
\( 3^{2} \) |
$1$ |
$3.121012474$ |
0.865613115 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -7\bigr] \) |
${y}^2+{y}={x}^{3}-7$ |
729.1-i1 |
729.1-i |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{8} \) |
$1.67414$ |
$(-a), (-a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B |
$1$ |
\( 1 \) |
$0.354151165$ |
$14.41546786$ |
2.831885807 |
\( -13515 a + 30222 \) |
\( \bigl[a\) , \( -a\) , \( a\) , \( -2 a - 3\) , \( -2 a - 3\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-2a-3\right){x}-2a-3$ |
729.1-i2 |
729.1-i |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{8} \) |
$1.67414$ |
$(-a), (-a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B |
$1$ |
\( 3 \) |
$0.118050388$ |
$14.41546786$ |
2.831885807 |
\( -16755 a + 39237 \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 3 a + 4\) , \( 10 a + 13\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(3a+4\right){x}+10a+13$ |
729.1-j1 |
729.1-j |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{14} \) |
$1.67414$ |
$(-a), (-a+1)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3^{2} \) |
$0.227641124$ |
$19.41608679$ |
2.451719308 |
\( -13515 a + 30222 \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( -8 a - 11\) , \( 28 a + 37\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-8a-11\right){x}+28a+37$ |
729.1-j2 |
729.1-j |
$2$ |
$3$ |
\(\Q(\sqrt{13}) \) |
$2$ |
$[2, 0]$ |
729.1 |
\( 3^{6} \) |
\( - 3^{14} \) |
$1.67414$ |
$(-a), (-a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$0.682923374$ |
$6.472028930$ |
2.451719308 |
\( -16755 a + 39237 \) |
\( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 10 a - 23\) , \( 20 a - 46\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(10a-23\right){x}+20a-46$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.