Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 5000 over real quadratic fields with discriminant 497

Refine search


Results (30 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
324.1-a1 324.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.549688489$ 1.261856548 \( -\frac{1250637664527933}{32} a - \frac{1629300280935823}{32} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -257 a + 13\) , \( 1140 a + 2856\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-257a+13\right){x}+1140a+2856$
324.1-a2 324.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.549688489$ 1.261856548 \( -\frac{461373}{2} a - \frac{601423}{2} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -14 a - 18\) , \( -34 a - 44\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-14a-18\right){x}-34a-44$
324.1-a3 324.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.549688489$ 1.261856548 \( -\frac{1680914269}{32768} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 669 a - 1560\) , \( -13229 a + 30488\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(669a-1560\right){x}-13229a+30488$
324.1-a4 324.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.549688489$ 1.261856548 \( \frac{461373}{2} a - 531398 \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 13 a - 32\) , \( 33 a - 78\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(13a-32\right){x}+33a-78$
324.1-a5 324.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.549688489$ 1.261856548 \( \frac{1331}{8} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -6 a + 15\) , \( 37 a - 85\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-6a+15\right){x}+37a-85$
324.1-a6 324.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.549688489$ 1.261856548 \( \frac{1250637664527933}{32} a - \frac{719984486365939}{8} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 256 a - 243\) , \( -1141 a + 3997\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(256a-243\right){x}-1141a+3997$
324.1-b1 324.1-b \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.168787711$ $5.155137791$ 1.930631613 \( -\frac{4653908}{3} a - \frac{387700105}{192} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -155 a + 346\) , \( 49 a - 102\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-155a+346\right){x}+49a-102$
324.1-b2 324.1-b \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.056262570$ $15.46541337$ 1.930631613 \( \frac{344113}{108} a - \frac{198007}{27} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( a + 1\) , \( 19 a + 25\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(a+1\right){x}+19a+25$
324.1-b3 324.1-b \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.112525140$ $15.46541337$ 1.930631613 \( -\frac{60298633043}{1458} a + \frac{138901252937}{1458} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( -59 a - 89\) , \( 307 a + 421\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(-59a-89\right){x}+307a+421$
324.1-b4 324.1-b \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.337575422$ $5.155137791$ 1.930631613 \( \frac{312258622128767}{36} a + \frac{813605851286657}{72} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 565 a - 1454\) , \( 121 a + 474\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(565a-1454\right){x}+121a+474$
324.1-c1 324.1-c \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.980924615$ 1.653519468 \( -\frac{344113}{108} a - \frac{149305}{36} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -3 a + 3\) , \( -41 a + 92\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-3a+3\right){x}-41a+92$
324.1-c2 324.1-c \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $8.942773845$ 1.653519468 \( \frac{4653908}{3} a - \frac{228516739}{64} \) \( \bigl[a\) , \( -a\) , \( a + 1\) , \( 29 a + 33\) , \( -10 a - 11\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(29a+33\right){x}-10a-11$
324.1-c3 324.1-c \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $8.942773845$ 1.653519468 \( -\frac{312258622128767}{36} a + \frac{479374365181397}{24} \) \( \bigl[a\) , \( -a\) , \( a + 1\) , \( -91 a - 207\) , \( -34 a + 229\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-91a-207\right){x}-34a+229$
324.1-c4 324.1-c \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.980924615$ 1.653519468 \( \frac{60298633043}{1458} a + \frac{13100436649}{243} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 87 a - 267\) , \( -851 a + 1766\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(87a-267\right){x}-851a+1766$
324.1-d1 324.1-d \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.056262570$ $15.46541337$ 1.930631613 \( -\frac{344113}{108} a - \frac{149305}{36} \) \( \bigl[a\) , \( -a\) , \( 1\) , \( -2 a + 3\) , \( -19 a + 44\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-2a+3\right){x}-19a+44$
324.1-d2 324.1-d \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.168787711$ $5.155137791$ 1.930631613 \( \frac{4653908}{3} a - \frac{228516739}{64} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 154 a + 192\) , \( -50 a - 52\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(154a+192\right){x}-50a-52$
324.1-d3 324.1-d \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.337575422$ $5.155137791$ 1.930631613 \( -\frac{312258622128767}{36} a + \frac{479374365181397}{24} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -566 a - 888\) , \( -122 a + 596\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-566a-888\right){x}-122a+596$
324.1-d4 324.1-d \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.112525140$ $15.46541337$ 1.930631613 \( \frac{60298633043}{1458} a + \frac{13100436649}{243} \) \( \bigl[a\) , \( -a\) , \( 1\) , \( 58 a - 147\) , \( -307 a + 728\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(58a-147\right){x}-307a+728$
324.1-e1 324.1-e \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $8.942773845$ 1.653519468 \( -\frac{4653908}{3} a - \frac{387700105}{192} \) \( \bigl[a + 1\) , \( -1\) , \( a\) , \( -31 a + 63\) , \( 9 a - 20\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-31a+63\right){x}+9a-20$
324.1-e2 324.1-e \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.980924615$ 1.653519468 \( \frac{344113}{108} a - \frac{198007}{27} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 3 a\) , \( 41 a + 51\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+3a{x}+41a+51$
324.1-e3 324.1-e \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.980924615$ 1.653519468 \( -\frac{60298633043}{1458} a + \frac{138901252937}{1458} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -87 a - 180\) , \( 851 a + 915\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-87a-180\right){x}+851a+915$
324.1-e4 324.1-e \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $8.942773845$ 1.653519468 \( \frac{312258622128767}{36} a + \frac{813605851286657}{72} \) \( \bigl[a + 1\) , \( -1\) , \( a\) , \( 89 a - 297\) , \( 33 a + 196\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(89a-297\right){x}+33a+196$
324.1-f1 324.1-f \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.085842366$ 1.157017170 \( -\frac{4395631034341}{3145728} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 9214 a - 21500\) , \( -657647 a + 1516071\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(9214a-21500\right){x}-657647a+1516071$
324.1-f2 324.1-f \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.085842366$ 1.157017170 \( \frac{5735339}{3888} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( -101 a + 235\) , \( 343 a - 789\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(-101a+235\right){x}+343a-789$
324.1-f3 324.1-f \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.085842366$ 1.157017170 \( \frac{476379541}{236196} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 439 a - 1025\) , \( 2431 a - 5613\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(439a-1025\right){x}+2431a-5613$
324.1-f4 324.1-f \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.042921183$ 1.157017170 \( -\frac{1025795879759761}{3486784401} a + \frac{5304841542920801}{6973568802} \) \( \bigl[a\) , \( -a\) , \( 1\) , \( -3770 a - 5085\) , \( 172133 a + 223258\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-3770a-5085\right){x}+172133a+223258$
324.1-f5 324.1-f \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.042921183$ 1.157017170 \( \frac{1025795879759761}{3486784401} a + \frac{1084416594467093}{2324522934} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 3769 a - 8855\) , \( -172133 a + 395391\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(3769a-8855\right){x}-172133a+395391$
324.1-f6 324.1-f \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.042921183$ 1.157017170 \( -\frac{1373276865151726904870180471}{1296} a + \frac{2108232339288241560240379517}{864} \) \( \bigl[a\) , \( -a\) , \( 1\) , \( -128735 a - 239805\) , \( 39888431 a + 59374840\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-128735a-239805\right){x}+39888431a+59374840$
324.1-f7 324.1-f \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.085842366$ 1.157017170 \( \frac{18013780041269221}{9216} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 147454 a - 344060\) , \( -41926895 a + 96662055\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(147454a-344060\right){x}-41926895a+96662055$
324.1-f8 324.1-f \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.042921183$ 1.157017170 \( \frac{1373276865151726904870180471}{1296} a + \frac{3578143287561270870980777609}{2592} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 128734 a - 368540\) , \( -39888431 a + 99263271\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(128734a-368540\right){x}-39888431a+99263271$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.