Properties

Base field \(\Q(\sqrt{3}) \)
Label 2.2.12.1-768.1-m
Conductor 768.1
Rank \( 1 \)

Related objects

Learn more

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

Rank

Rank: \( 1 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Elliptic curves in class 768.1-m over \(\Q(\sqrt{3}) \)

Isogeny class 768.1-m contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
768.1-m1 \( \bigl[0\) , \( -1\) , \( 0\) , \( 32 a - 54\) , \( -138 a + 240\bigr] \)
768.1-m2 \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -24 a + 44\) , \( -72 a + 124\bigr] \)
768.1-m3 \( \bigl[0\) , \( -1\) , \( 0\) , \( 2 a - 4\) , \( -2 a + 4\bigr] \)
768.1-m4 \( \bigl[0\) , \( -1\) , \( 0\) , \( 12 a - 34\) , \( 46 a - 56\bigr] \)